- Which one of the following statements is not true in respect of properties of interhalogen compounds?
 - (A) They are all covalent compounds
 - (B) They are volatile solids or liquids except CIF
 - (C) IF5 has square pyramidal structure
 - (D) They are all paramagnetic in nature
 - (E) BrF3 is used in the preparation of UF6 in the enrichment of ²³⁵U
- . Which one of the following is an incorrect statement?
 - (A) O3 oxidises PbS to PbSO4
 - (B) O3 oxidises nitric oxide to nitrogen dioxide
 - (C) O₁ oxidises aqueous KI at pH = 9.2
 - (D) The two oxygen-oxygen bond lengths in O3 are different
 - (E) O3 is used as an oxidizing agent in the manufacture of KMnO4
- . The correct descending order of oxidizing power of the following is
 - (A) $Cr_2O_7^{2-} > MnO_4^- > VO_2^+$ (B) $MnO_4^- > Cr_2O_7^{2-} > VO_2^+$ (C) $VO_2^+ > MnO_4^- > Cr_2O_7^{2-}$ (D) $MnO_4^- > VO_2^+ > Cr_2O_7^{2-}$ (E) $Cr_2O_7^{2-} > VO_2^+ > MnO_4^-$
- The number of electrons that are involved in the reduction of permanganate to manganese(II) salt, manganate and manganese dioxide respectively are

(A) 5, 1, 3	(B) 5, 3, 1	(C) 2, 7, 1
(D) 5, 2, 3	(E) 2, 3, 1	

77. The calculated magnetic moment of a divalent ion of an atom with atomic number 24 in aqueous solution is

(A) 4.90 BM	(B) 5.92 BM	(C) 3.87 BM
(D) 2.84 BM	(E) 1.73 BM	

78. The entropy of vaporization of a liquid is 58 JK⁻¹mol⁻¹. If 100 g of its vapour condenses at its boiling point of 123°C, the value of entropy change for the process is

(Molar mass of the liquid = 58 g mol⁻¹) (A) -100 JK^{-1} (B) 100 JK^{-1} (C) -123 JK^{-1} (D) 123 JK^{-1} (E) 1230 JK^{-1}

79. The values of limiting ionic conductance of H⁺ and HCOO⁻ ions are respectively 347 and 53 S cm² mol⁻¹ at 298 K. If the molar conductance of 0.025M methanoic acid at 298 K is 40 S cm² mol⁻¹, the dissociation constant of methanoic acid at 298 K is

(A) 1×10^{-5} (B) 2×10^{-5} (C) 1.5×10^{-4} (D) 2.5×10^{-5} (E) 2.5×10^{-4}

80. In a closed cylinder of capacity 24.6 L the following reaction occurs at 27°C

 $A_2(s) \rightleftharpoons B_2(s) + 2C(g)$. At equilibrium 1 g of $B_2(s)$ (molar mass = 50 g mol⁻¹) is present. The equilibrium constant K_p for the equilibrium in atm² unit is

 $\begin{array}{c} (\text{R} = 0.082 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}) \\ (\text{A}) \ 1.6 \times 10^{-2} \\ (\text{D}) \ 1.6 \times 10^{-4} \\ \end{array} \qquad \begin{array}{c} (\text{B}) \ 1.6 \times 10^{-5} \\ (\text{E}) \ 1.6 \times 10^{-1} \\ \end{array} \qquad \begin{array}{c} (\text{C}) \ 1.6 \times 10^{-3} \\ \end{array}$

 The pH of a saturated solution of a metal hydroxide of formula X(OH)₂ is 12.0 at 298 K. What is the solubility product of the metal hydroxide at 298 K (in mol³ L⁻³)?

(A)	2×10 ⁻⁶	(B) 1×10 ⁻⁷	(C) 5×10 ⁻⁵
(D)	2×10 ⁻⁵	(E) 5×10 ⁻⁷	

An aqueous solution containing 3 g of a solute of molar mass 111.6 g mol⁻¹in a certain mass of water freezes at -0.125 °C. The mass of water in grams present in the solution is (K_f = 1.86 K kg mol⁻¹)
 (A) 300
 (B) 600
 (C) 500
 (D) 400
 (E) 250

 A sample of sea water contains 5 ×10⁻³ g of dissolved oxygen in 1 kilogram of the sample. The concentration of O₂ in that sea water sample in ppm is

(A) 5×10^{-4} (B) 5×10^{-3} (C) 5×10^{-2} (D) 5×10^{-1} (E) 5

- The change in potential of the half-cell Cu^{2*} Cu, when aqueous Cu^{2*} solution is diluted 100 times at 298 K? $\left(\frac{2.303 \text{ RT}}{\text{F}} = 0.06\right)$
 - (A) increases by 120 mV (B) decreases by 120 mV (C) increases by 60 mV
 - (D) decreases by 60 mV (E) no change

. Consider the following electrolytic cells

- (i) M(s) $M^{2+}(aq), 0.1M X^{2+}(aq), 0.01M X(s)$
- (ii) M(s) $M^{2+}(aq), 0.1M \parallel X^{2+}(aq), 0.1M \parallel X(s)$ and
- (iii) M(s) | M²⁺(aq), 0.01M || X²⁺(aq), 0.1M | X(s)

The cell EMF of the above cells are E_1 , E_2 and E_3 respectively. Which one of the following is true?

(A) $E_1 > E_2 > E_3$ (B) $E_2 > E_3 > E_1$ (C) $E_3 > E_1 > E_2$ (D) $E_1 > E_3 > E_2$ (E) $E_3 > E_2 > E_1$

- 86. In a reaction 2A + B → 3C, the concentration of A decreases from 0.5 mol L⁻¹ to 0.3 mol L⁻¹ in 10 minutes. The rate of production of 'C'during this period is
 - (A) 0.01 mol $L^{-1} min^{-1}$ (B) 0.04 mol $L^{-1} min^{-1}$ (C) 0.05 mol $L^{-1} min^{-1}$ (D) 0.03 mol $L^{-1} min^{-1}$ (E) 0.02 mol $L^{-1} min^{-1}$
- Ammonium ion (NH4⁺) reacts with nitrite ion (NO2⁻) in aqueous solution according to the equation

 $NH_4^+(aq) + NO_2^-(aq) \rightarrow N_2(g) + 2H_2O(1)$

The following initial rates of reaction have been measured for the given reactant concentrations.

Expt. No.	[NH4'], (M)	[NO ₂ ⁻], (M)	Rate (M/hr)
1	0.010	0.020	0.020
2	0.015	0.020	0.030
3	0.010	0.010	0.005

Which of the following is the rate law for this reaction?

(A) rate = $k [NH_4^+] [NO_2^-]^4$ (B) rate = $k [NH_4^+] [NO_2^-]$

- (C) rate = $k [NH_4^+] [NO_2^-]^2$ (D) rate = $k [NH_4^+]^2 [NO_2^-]$
- (E) rate = $k [NH_4^+]^{1/2} [NO_2^-]^{1/4}$
- Gold sol can be prepared by
 - (A) hydrolysis of gold(III) chloride
 - (B) oxidation of gold by aqua regia
 - (C) peptization
 - (D) treating gold(III) chloride with metallic zinc
 - (E) reduction of gold(III) chloride with formalin solution

89. The IUPAC name of the complex [Co(NH₃)₂(H₂O)₄]Cl₃ is

- (A) Diaminetetraaquacobalt(III) trichloride
- (B) Diaminetetraaquacobalt(II) chloride
- (C) Diaminetetraaquacobalt(III) chloride
- (D) Tetraaquadiaminecobalt(III) trichloride
- (E) Tetraaquadiaminecobalt(II) chloride

The products obtained by the ozonolysis of 2-ethylbut-1-ene are

- (A) propanone and ethanal
- (B) ethanal and 3-pentanone
- (C) butanal and ethanal
- (D) methanal and 2-pentanone
- (E) methanal and 3-pentanone

When but-2-yne is treated with Na in liquid ammonia

- (A) cis-2-butene is obtained
- (B) trans-2-butene is formed
- (C) n-butane is the major product
- (D) it rearranges to but-1-yne
- (E) there is no reaction

The correct decreasing order of reactivity for a given alkyl (R) group in both S_N1 and S_N2 reaction mechanisms is

- (A) R-I > R-Br > R-Cl > R-F
- (B) R-I > R-Cl > R-Br > R-F
- (C) R-F > R-Cl > R-Br > R-I
- (D) R-F > R-I > R-Cl > R-Br
- (E) R-Br > R-I > R-F > R-Cl

The compound of molecular formula C₅H₁₀O(A) reacts with Tollen's reagent to give silver mirror but does not undergo aldol condensation. The compound A is

- (A) 3-pentanone
- (B) 2,2-dimethylpropanal
- (C) 3-hydroxy-2-pentene
- (D) 3-methylbutanal
- (E) 3-methyl-2-butanone

94. When n-hexane is heated with anhydrous AICl3 and HCl gas, the major product obtained is

(A) 1-chlorohexane

(B) 2-chlorohexane

(C) 3-chlorohexane

(D) hex-3-ene

(E) mixture of 2-methylpentane and 3-methylpentane

95. How many monochloro structural isomers are expected in free radical monochlorination of 2-methylbutane?

(A) 2 (B) 3 (C) 4 (D) 5 (E) 6

96. Chloroform reacts with oxygen in the presence of light to give

(A) carbon tetrachloride

(B) carbonyl chloride

(C) methyl chloride

(D) methylene dichloride

(E) acetaldehyde

97. Which one of the following is not expected to undergo iodoform reaction?

(A) Propan-2-ol	(B) 1-Phenylethanol	(C) 2-Butanol
(D) Ethanol	(E) Diphenyl methanol	

 Identify the combination of compounds that undergo Aldol condensation followed by dehydration to produce but-2-enal

(A) methanal and ethanal

(B) two moles of ethanal

(C) methanal and propanone

(D) ethanal and propanone

(E) two moles of ethanol

The correct increasing order of the acid strength of benzoic acid(I), 4-nitrobenzoic acid(II), 3,4-dinitrobenzoic acid(III) and 4-methoxybenzoic acid(IV) is

(A) I < II < III < IV	(B) II < I < IV < III	(C) $IV < I < II < III$
(D) $IV < II < I < III$	(E) $1 \le IV \le II \le III$	

An organic compound with the molecular formula C₈H₈O forms 2,4-DNP derivative, reduces Tollen's reagent and undergoes Cannizzaro reaction. On vigorous oxidation, it gives1,2-benzenedicarboxylic acid. The organic compound is

- (A) 2-ethylbenzaldehyde
- (B) 2-methylbenzaldehyde
- (C) acetophenone
- (D) 3-methylbenzaldehyde
- (E) phenylacetaldehyde
- . Phenyl isocyanide is prepared from aniline by
 - (A) Rosenmund's reaction
 - (B) Kolbe's reaction
 - (C) Reimer-Tiemann reaction
 - (D) Wurtz reaction
 - (E) Carbylamine reaction
- Choose the correct order of decreasing basic strength of the following compounds in aqueous solution

(i) $C_6H_5NH_2$ (ii) $C_2H_5NH_2$ (iii) NH_3 (iv) $(CH_3)_2NH$

- (A) (i) > (ii) > (iii) > (iv)
- (B) (iv) > (ii) > (iii) > (i)
- (C) (ii) > (i) > (iii) > (iv)
- (D) (iv) > (iii) > (ii) > (i)
- (E) (ii) > (iv) > (iii) > (i)

Space for rough work

& Chem-1-A2-2014

103. Gabriel's phthalimide synthesis can be used to prepare

(A) ethanamine

(B) N-methylmethanamine

- (C) benzeneamine (D) N,N-dimethylmethanamine
- (E) p-toluidine

104. The sugar moiety present in RNA molecule is

- (A) β-D-2-deoxyribose(B) β-D-galactose
- (C) β-D-fructofuranose (D) β-D-ribose
- (E) β-D-glucopyranose

105. Novlac, the linear polymer used in paints is

- (A) copolymer of 1,3-butadiene and styrene
- (B) obtained by the polymerization of methyl methacrylate
- (C) initial product obtained in the condensation of phenol and formaldehyde in the presence of acid catalyst
- (D) obtained by the polymerization of caprolactam
- (E) copolymer of melamine and formaldehyde

106. The carbohydrate used as storage molecules in animals is

(A) sucrose

(B) glycogen

(C) maltose

(D) glucose (E) fructose

107. Green chemistry deals with

- (A) study of plant physiology
- (B) study of extraction of natural products from plants
- (C) detailed study of reactions involved in the synthesis of chlorophyll
- (D) utilization of existing knowledge base for reducing the chemical hazards along with developmental activities
- (E) synthesis of chemical compounds using green light

A 250 W electric bulb of 80% efficiency emits a light of 6626 Å wavelength. The number of photons emitted per second by the lamp is $(h = 6.626 \times 10^{-34} \text{ Js})$

(A) 1.42×10^{17}	(B) 2.18×10^{16}	(C) 6.66×10^{20}
(D) 2.83×10^{16}	(E) 4.25×10^{16}	

The shortest wavelength of the line in hydrogen atomic spectrum of Lyman series when $R_H = 109678 \text{ cm}^{-1}$ is

(A) 1002.7 Å	(B) 1215.67 Å	(C) 1127.30 Å
(D) 911.7 Å	(E) 1234.7 Å	1960 C. 1957 C. 1977

The work function of a metal is 5 eV. What is the kinetic energy of the photoelectron ejected from the metal surface if the energy of the incident radiation is 6.2 eV? $(1 \text{ eV} = 1.6 \times 10^{-19} \text{ J})$

(A) $6.626 \times 10^{-19} \text{ J}$	(B) 8.01×10^{-19} J	(C) $1.92 \times 10^{-18} J$
(D) 8.010×10^{-18} J	(E) $1.92 \times 10^{-19} \text{J}$	2.2

The lattice energy of NaCl is 788 kJ mol⁻¹. This means that 788 kJ of energy is required

- (A) to separate one mole of solid NaCl into one mole of Na(g) and one mole of Cl(g) to infinite distance
- (B) to separate one mole of solid NaCl into one mole of Na⁺(g) and one mole of Cl⁻(g) to infinite distance
- (C) to convert one mole of solid NaCl into one mole of gaseous NaCl
- (D) to convert one mole of gaseous NaCl into one mole of solid NaCl
- (E) to separate one mole of gaseous NaCl into one mole of Na⁺(g) and one mole of CI⁻(g) to infinite distance

112. Arrange the following species in the correct order of their stability

 C_2 , Li_2 , O_2^+ , He_2^+

- (A) $Li_2 \le He_2^* \le O_2^* \le C_2$ (B) $C_2 \le O_2^* \le Li_2 \le He_2^*$
- (C) $He_2^+ \le Li_2 \le C_2^- \le O_2^+$ (D) $O_2^+ \le C_2 \le Li_2 \le He_2^+$
- (E) $C_2 < Li_2 < He_2^+ < O_2^+$
- Molecular formulae and shapes of some molecules are given below. Choose the incorrect match
 - Formula Shape
 - (A) NH₃ Trigonal pyramidal
 - (B) SF₄ Tetrahedral
 - (C) ClF3 T-shaped
 - (D) PCl₅ Trigonal bipyramidal
 - (E) BF₃ Trigonal planar
- 114. Potassium dichromate belongs to which crystal system?
 - (A) Tetragonal (B) Orthorhombic (C) Triclinic
 - (D) Hexagonal (E) Monoclinic
- 115. If two moles of an ideal gas at 500 K occupies a volume of 41 litres, the pressure of the gas is (R = 0.082 L atm K⁻¹ mol⁻¹)

$(A) = 2 \operatorname{ann} (B) = 3 \operatorname{ann} (C) = 4 \operatorname{ann} (D) = 5 \operatorname{ann} (E) = 4 \operatorname{ann} (E) $	(A) 2 atm	(B) 3 atm	(C) 4 atm	(D) 5 atm	(E) I atm
--	-----------	-----------	-----------	-----------	-----------

116. At 273 K, the density	of a certain gaseome oxid	
dioxygen at 5 atmospher	e. The molecular mass of th	at 2 atmosphere is same as that of
(A) 80	(B) 64	(C) 32
(D) 160	(E) 70	(C) 32
117. The reaction of H ₂ is give	n below	
$H_2 + CO + R - CH$	$I=CH_2 \rightarrow R-CH_2-CH_2-CH_2-CH_2$	Ю
is specifically called as	5 C.S. C	
(A) hydrogenation	(B) reduction	(C) hydroformylation
(D) dehydration	(E) formylation	(c) nyeronomytanon
118. Which of the following an	e isoelectronic species?	
(i) NH ₃ (ii) CH	1 ⁺ (iii) NH5 ⁻	(iv) NH +
Choose the correct answer	from the codes given below	(iv) Nri4
(A) (i), (ii), (iii)	(B) (ii), (iii), (iv)	(C) (A) (A)
(D) (i), (iii), (iv)	(E) (ii), (iii)	(C) (i), (ii), (iv)
119. The salt of an alkali metal	gives violet colour in the fl	man tool. He was a literated
 white precipitate with bari 	um chloride in hydrochloric	acid medium. The studies a
(A) K ₂ SO ₄	(B) KCl	(C) No SO
(D) K ₂ CO ₃	(E) Li ₂ SO ₄	(C) Na ₂ SO ₄
120. In which one of the follow	ing the central atom is sn3 h	vbridized?
(A) NH4 ⁺	(B) BF1	(C) SE
(D) PC15	(E) XeF4	(C) SF6

Space for rough work

Phy & Chem-I-A2-2014

[P.T.O.

BLANK PAGE

Phy & Chem-I-A2-2014

	VERSION		VERSION
Q.No.	A2	Q.No.	A2
		-91	в
		92	A
		93	В
		94	E
		95	C
		96	в
		97	E
		98	в
		99	C
		100	в
		101	E
		102	В
73	D	103	A
74	D	104	D
75	в	105	C
76	A	106	в
77	A	107	D
78	A	108	C
79	E	109	D
80	C	110	E
81	E	111	в
82	D	112	C
83	E	113	B
84	D	114	C
85	E	115	A
86	D	116	A
87	С	117	C
88	Е	118	D
89	C	119	A
90	E	120	A

73. The threshold frequency of a metal corresponds to the wavelength of x mm. In two separate experiments 'A' and 'B', incident radiations of wavelengths $\frac{1}{2}x$ mm and $\frac{1}{4}x$ mm respectively are used. The ratio of kinetic energy of the released electrons in experiment 'B' to that in experiment 'A' is

(A) $\frac{1}{3}$ (B) 2 (C) 4 (D) 3 (E) $\frac{1}{2}$

74. The minimum values of uncertainties involved in the determination of both the position and velocity of a particle are respectively 1 × 10⁻¹⁰m and 1 × 10⁻¹⁰ms⁻¹. Then, the mass (in kg) of the particle is

(A) 5.270×10^{-13} (B) 5.270×10^{-39} (C) 5.270×10^{-16} (D) 5.270×10^{-10} (E) 5.270×10^{-54}

75. The number of electrons with azimuthal quantum number 1 = 1 and 1 = 2 for Cr in ground state are respectively

(A) 16, 5 (B) 16, 4 (C) 12, 4 (D) 16, 3 (E) 12, 5

Space for rough work

IP.T.O.

76. An odd electron molecule among the following is

(A) CO (B) SO₂ (C) CO₂ (D) NO (E) OF-

77. Aluminium (Atomic mass = 27) crystallizes in a cubic system with edge length of 4 A°. Its density is 2.7 g cm⁻³. The number of aluminium atoms present per unit cell is

(A) 5 (B) 6 (C) 4 (D) 2 (E) 3

78. Which of the following changes in the respective bond order values are caused by removal of an electron from N₂ and F₂ molecules?

- (A) decrease by 0.5 in both
- (B) increase by 0.5 in both
- (C) increase by 0.5 in the former and decrease by 0.5 in the later
- (D) decrease by 0.5 in the former and increase by 0.5 in the later
- (E) no change in both

79. For two isomorphous crystals A and B, the ratio of density of A to that of B is 1.6 while the ratio of the edge length of B to that of A is 2. If the molar mass of crystal B is 200 g mol⁻¹, then that of crystal A is

(A) 240 g mol ⁻¹	(B) 120 g mol ⁻¹	(C) 80 g mol ⁻¹
(D) 160 g mol ⁻¹	(E) 40 g mol ⁻¹	

Spuce for rough work

Phy & Chem-1-A1-2015

80. A binary solid has a primitive cubical structure with B⁻ ions constituting the lattice points and A⁺ ions occupying 25% of its tetrahedral holes. The molecular formula of the crystal is

(A) A_2B (B) AB_3 (C) AB_2 (D) A_2B_3 (E) A_2B_3

81. The correct order of first ionisation enthalpies of the following elements is

(A) $Be \ge Mg \ge Ca \ge Sr \ge Ra \ge Ba$ (B) $Ra \ge Ba \ge Sr \ge Ca \ge Mg \ge Be$

(C) $Be \ge Mg \ge Ca \ge Sr \ge Ba \ge Ra$ (D) $Ra \ge Sr \ge Ba \ge Mg \ge Ca \ge Be$

(E) $Be \ge Mg \ge Ca \ge Ra \ge Ba \ge Sr$

Which one of the following is reduced by H₂O₂ in alkaline medium?
 (A) Fe²⁺
 (B) HOCI
 (C) KMnO₄
 (D) PbS
 (E) Mn²⁺

83. Match the following

Column I			Column II		
(a) Sphalerite	÷	(i)	FeCO ₃		
(b) Malachite	8	(ii)	ZnCO ₂		
(c) Calamine	÷	(111)	Na_3AlF_6		
(d) Cryolite	3	(iv)	CuCO ₁ .Cu(OH) ₂	
(c) Siderite	$\frac{1}{2}$	(v)	ZnS		
$(A) (a) * (\overline{i}\overline{i}\overline{i}),$	(b) -	(i),	(c) - (v),	(d) - (ii),	(c) - (iv
(B) (a) - (v),	(b) -	(iv),	(c) - (ii),	(d) - (i),	(c) - (iii
(C) (a) - (v),	(b) -	(iii),	(c) - (ii),	(d) - (i),	(c) - (iv
(D) (a) - (v),	(b) -	(iv),	(c) - (ii),	(d) - (iii),	(e) - (i)
(E) (a) - (ii),	(b) -	(iii),	(c) - (i),	(d) - (v),	(c) - (iv

Space for rough work.

Phy & Chem-I-A1-2015

23

[P.T.O.

)

84. In the metallurgy of zinc, the reducing agent employed in reducing the zinc oxide to crude zinc metal in the last stage is

(C) Coke (D) Water gas (E) Hygan (A) AI (B) Li

85. Which one of the following has the maximum number of P-OH bonds? (A) H₃PO₂ (B) H₃PO₄ (C) H₃PO₅ (D) H₄P₂O₂ (E) H₄P₂O₆

- 86. The relative strengths of trichlorides of boron group to accept a pair of electron is given by
 - (B) AlCl₁ < BCl₁ < GaCl₃ (A) GaCl₁ < AICl₃ < BCl₃
 - (C) $AlCl_1 \leq GaCl_1 \leq BCl_1$ (D) $BCl_1 \leq AlCl_1 \leq GaCl_1$
 - (E) GaCl₂ < BCl₂ < AlCl₃

87. The hybridised state of bromine in bromine pentafluoride is

(C) d'sp (E) sp'd (B) dsp² (D) sp*d (A) sp'd

88. In which one of the following, d-d transition involves absorption in the ultraviolet region

(A)	$[Cu(H_2O)_4]^2$	(B) [Ti(H ₂ O) ₆] ^{3*}	(C) [Co(NH ₁),] ³
(D)	[Co(CN)6]3	(E) [Co(NH) ₃ Cl] ²⁴	

89. Which one of the following has a different crystal lattice from those of the rest?

	(A) Ag	(B) V	(C) Cu	(D) Pt	(E) Au
90.	The hardest l	anthanide eleme	nt Bs		
	(A) Sm	(B) La	(C) Gd	(D) Dy	(E) Yb

Space for rough work

Phy & Chem-1-A1-2015

- 91. The enthalpy change for a reaction at equilibrium is -20.5 kJ mol⁻¹. Then the entropy change for this equilibrium at 410 K is
 - (A) $\pm 50 \text{ JK}^{-1}\text{mol}^{-1}$ (B) $\pm 55 \text{ JK}^{-1}\text{mol}^{-1}$ (C) $\pm 75 \text{ JK}^{-1}\text{mol}^{-1}$ (D) $\pm 50 \text{ JK}^{-1}\text{mol}^{-1}$ (E) $\pm 55 \text{ JK}^{-1}\text{mol}^{-1}$
- 92. The enthalpy of combustion of glucose (mol. wt: 180 g mol.') is -2840 kJ mol⁻¹. Then the amount of heat evolved when 0.9 g of glucose is burnt, will be

(A) 14.2 kJ (B) 14.2 J (C) 28.4 kJ (D) 1420 kJ (E) 142 kJ

- 93. If the ionic product of M(OH)₂ is 5 × 10⁻¹⁰, then the molar solubility of M(OH)₂ in 0.1M NaOH is
 - (A) 5×10^{-12} M (B) 5×10^{-9} M (C) 5×10^{-10} M (D) 5×10^{-9} M (E) 5×10^{-10} M

94. Equilibrium constants are given for the following two equilibria

(i) $A_2(g) + B_2(g) \Rightarrow 2AB(g); K = 2 \times 10^{-4}$

(ii) $2AB(g) + C_3(g) \neq 2ABC(g)$; $K = 2 \times 10^{-2} L \text{ mol}^{-1}$.

Calculate the equilibrium constant for the following equilibrium

 $ABC(g) \Rightarrow \frac{1}{2}A_2(g) + \frac{1}{2}B_2(g) + \frac{1}{2}C_2(g)$

(A) $500 \mod^{1/2} L^{1/2}$ (B) $4 \times 10^{-6} \mod^{1/2} L^{1/2}$ (C) $500 \mod^{-1/2} L^{1/2}$ (D) $200 \mod^{1/2} L^{-1/2}$ (E) $500 \mod^{1/2} L^{-1/2}$

Space for rough work.

Phy & Chem-1-A1-2015

25

P.T.O

95. The equilibrium constant for the equilibrium PCl₃(g) — PCl₃(g) + Cl₂(g) at a particular temperature is 2 × 10⁻² mol L⁻¹. The number of moles of PCl₃ that must be taken in a one-litre flask at the same temperature to obtain a concentration of 0.20 mol of chlorine at equilibrium is

(A) 2.2 (B) 2.0 (C) 1.8 (D) 0.2 (E) 0.1

96. 18 g of glucose is dissolved in 178.2 g of water. The vapour pressure of the solution at 100°C is (vapour pressure of pure water at 100° C is 760 mm Hg)

(A) 767.6 mm Hg	(B) 760 mm Hg	(C) 752.4 mm Hg.
(D) 725.4 mm Hg	(E) 745.2 mm Hg	

- 97. Which one of the following binary liquid mixtures exhibit positive deviation from Raoult's law?
 - (A) Carbon disulphide acetone
 (B) Chloroform acetone
- (C) Bromobenzene chlorobenzene (D) Benzene toluene

(E) Phenol – aniline

98. The standard electrode potentials of Zn and Ni are respectively – 0.76 V and – 0.25 V. Then the standard emf of the spontaneous cell by coupling these under standard conditions is

(A) + 1.01 V (B) - 0.51 V (C) + 0.82 V (D) + 0.25 V (E) + 0.51 V

100

Space for mugh work

Phy & Chem-1-A1-2015

99. How many moles of platinum will be deposited on the cathode when 0.60 F of electricity is passed through a 1.0M solution of Pt⁴⁺?

(A) 0.60 mol (B) 0.15 mol (C) 0.30 mol (D) 0.45 mol (E) 1.0 mol

100. The half-life period of a first order reaction having rate constant $k = 0.231 \times 10^{-10} \text{s}^{-1}$ will be

(A) 32×10^{10} s (B) 2×10^{10} s (C) 3×10^{10} s (D) 2×10^{-10} s (E) 3×10^{-12} s

101. For the reaction X → Y, the concentrations of 'X' are 1.2M, 0.6M, 0.3M and 0.15M at 0, 1, 2 and 3 hours respectively. The order of the reaction is

(A) zero (B) half (C) one (D) two (E) three

102. The enzyme that converts glucose into ethyl alcohol and carbon dioxide is

(A) invertase (B) maltase (C) urease (D) diastase (E) zymase

Space for rough work.

27

Phy & Chem-1-A1-2015

103. List I contains the type of colloid while List II contains the examples

List I		List II	
(a) Sol	(ī)	dust	
(b) Aerosol	(iii)	cheese	
(c) Gel	(iiii)	soap lather	
(d) Foam	(iv)	plants cell fluids	
Choose the con	rect match		
(A) (a) - (iv),	(b) - (iii),	(c) - (i),	(d) - (ii)
(B) (a) - (iv),	(b) - (i),	(c) - (ii),	(d) - (iii)
(C) (a) - (iii),	(b) - (iv),	(c) - (ii),	(d) - (i)
(D) (a) -(iii),	(b) - (i),	(c) - (iv),	(d) - (ii)
(E) (a) - (i),	(b) - (iii),	(c) - (iv).	(d) = (ii)

104. The chelating ligand used to remove excess of copper and iron in chelate therapy is

(c) - (iv),

(d) - (ii)

(A)	D-Penicillamine	(B) Oxalate ion	(C) EDTA
(D)	Ethylene diamine	(E) Dimethyl glyoxime	6/

105. The correct ascending order of ligand field strengths of the given ligands is

(A) $F \leq \Gamma \leq CN \leq H_2O \leq CO$	(B) $\Gamma < F < H_2O < CO < CN^{-1}$
(C) $\Gamma < F < H_2O < CN < CO$	(D) $F \le H_2 O \le \Gamma \le CN \le CO$
(E) F < I < CO < H ₂ O < CN ⁻	21 R 1997 1995

106. An organic compound contains 90% carbon and 10% hydrogen by mass, Its empirical formula is

(A) C:H4 (B) C₁H₆ (C) C₃H₂ (D) C₃H₄ (E) C-H₄

Space for rough work

Phy & Chem-I-A1-2015

28

(A) crystallization	(B) sublim	ation
(C) differential extracti	ion (D) chrom	atography
(E) distillation under re	educed pressure	
08. The IUPAC name of (C	$(H_3)_1 C - CH = CH_2$ is	
(A) 2, 2-dimethylbut-3	-ene (B) 2, 2-0	limethylpent-3-ene
(C) 3, 3-dimethylbut-1	-ene (D) hex-	l-ene
(E) 2, 2-dimethylhex-2	2-ene	
 When methane is heat organic product obtain 	ed with dioxygen in the pre ed is	sence of Mo ₂ O ₃ catalyst, th
(A) methanal	(B) ethanoic acid	(C) methanol
(D) ethanol	(E) 2-methylpropan-2	l-ol
110. Isomers which can be	e interconverted through rot	ation about C-C single bon
are	(D)	(C) conformers
(A) diasteromers	(B) enantioniers	(c) contraints
(D) chain isomers	(E) position isomers	
111. Which one of the follo	owing compounds shows cis-	trans Isomerism?
(A) Pent-1-ene	(B) But-2-ene	(C) But-1-ene
(D) Propene	(E) Ethene	
	Space for rough work	

Phy & Chem-I-A1-2015

29

[P.T.O.

112. Among the following, the ambident nucleophile is

(A) iodide (B) alkoxy (C) hydroxyl (D) hydride (E) cyanide

113. Which one of the following is an allylic halide?

- (A) 2-chlorobutane (B) Chloroethene (C) 3-bromopropene
- (D) 2-chlorotoluene (E) Dichloromethane

114. Out of the following isomeric alcohols containing five carbon atoms, the alcohol that exhibits optical isomerism is

(A) 1-pentanol (B) 2-pentanol (C) 3-pentanol

(D) 2-methyl-2-butanol (E) 2,2-dimethyl-1-propanol

115. Which one of the following undergoes iodoform test?

 (A) Propanal
 (B) Ethanal
 (C) Benzophenone

 (D) Benzaldehyde
 (E) Phenot

116. Which one of the following is used as a test for aliphatic primary amines?

- (A) Tollen's test(B) Fehling's test(C) Isocyanide test
- (D) Azo dye test (E) Phthalein fusion test

117. When methanamine is treated with benzoyl chloride, the major product is

(A) N-phenylethanamide (B) N-methylbenzamide

(C) benzanilide (D) acetophenone

(E) N-ethylethanamide

Space for rough work

Phy & Chum-I-A1-2015

118. In DNA, the consecutive deoxynucleotides are connected by

- (A) phosphodiester linkage
- (B) phosphomonoester linkage
- (C) phosphotriester linkage
- (D) amide linkage
- (E) imide linkage

119. Which one of the following monomers form biodegradable polymer?

- (A) Urea and formaldehyde
- (B) Ethylene glycol and terephthalic acid

(C) 3-hydroxybutanoic acid and 3-hydroxypentanoic acid

- (D) Phenol and caproic acid
- (E) Adipic acid and hexamethylenediamine

120. Match the following

	Drug			Class		
(a)	Dimetapp	2.4	(i)	Antidepressau	int.	
(b)	Furacine	-	(ii)	Analgesic		
(c)	Phenelzine		(iii)	Antiseptic		
(d)	Aspirin	1	(iv)	Antifertility		
(c)	Norethindro	ne -	(v)	Antihistamine		
(A)	(a) - (ii),	(b) - i	(iv),	(c) - (v),	(d) - (iii),	(e) - (i)
(B)	(a) - (iii),	(b) - ((v),	(c) - (ii),	(d) - (i),	(e) - (iv)
(C)	(a) - (v),	(b) - ((iv),	(c) - (ii),	(d) - (i),	(c) - (iii)
(D)	(a) - (v),	(b) - ((iii),	(c) - (ī),	(d) - (ii),	(c) - (iv)
(E)	(a) - (ii),	(b) - ((iii),	(c) - (i),	(d) - (v),	(c) - (iv)

BLANK PAGE

Pby & Chem-I-A1-2015

32

73	D
74	A
75	E
76	0
77	C
78	0
79	E
80	C
81	A
82	c
83	Q
84	¢
85	E
86	A
87	£
88	D
89	8
90	A
91	D
.92	A
93	B
94	1
95	A
96	c
.97	Α
98	E
99	8
100	c
101	C
102	E
103	8
104	A
105	¢
106	D
107	Ŧ
108	c
109	A
110	¢
111	B
112	<u> </u>
113	¢
114	. 8
315	0
116	¢
117	
115	4
119	. C
126	D

76. The standard enthalpy of formation of H₂O(1) and Fe₂O₃(s) are respectively - 286 kJ mol⁻¹ and - 824 kJ mol⁻¹. What is the standard enthalpy change for the following reaction?

	$Fe_2O_3(s) +$	3H ₂ (g)	\rightarrow 3H ₂ O(1) +	2Fc(s)	
(A)	- 538 kJ mol ⁻¹	(B)	+ 538 kJ mol-1	(C) - 102 kJ mol	
(D)	+ 34 kJ mol ⁻¹	(E)	- 34 kJ mol		

77. The correct descending order of the heat liberated (in kJ) during the neutralization of the acids CH₃COOH (W), HF (X), HCOOH (Y) and HCN (Z) under identical conditions (K₈ of CH₃COOH=1.8×10⁻⁵, HCOOH=1.8×10⁻⁴, HCN=4.9×10⁻¹⁰ and HF=3.2×10⁻⁴) is

(A) Y > X > Z > W	(B) $X > Y > W > Z$
C) $W > X > Y > Z$	(D) $Z > W > Y > X$
E) Z > Y > X > W	

78. How many times a 0.1 M strong monobasic acid solution should be diluted so that pH of the resulting solution is tripled?

(A)	50	(B)	10	(C)	25
(D)	100	(E)	1000		

Space for rough work

Phy-Chy-I-A2/2016

[P.T.O.

79. The equilibrium pressure for the reaction $MSO_4.2H_2O(s) \rightleftharpoons MSO_4(s)+2$
 $H_2O_{(g)}$ is $\pi/4$ atm at 400 K. The K_p for the given reaction (in atm.²) is(A) $\pi^2/4$ (B) $\pi/6$ (C) $\pi^2/16$ (D) $\pi/16$ (E) $16/\pi$

80. Calculate the molality of a solution that contains 51.2 g of naphthalene, (C₁₀H_g), in 500 mL of carbon tetrachloride. The density of CCl₄ is 1.60 g/mL.
 (A) 0.250 m
 (B) 0.500 m
 (C) 0.750 m
 (D) 0.840 m
 (E) 1.69 m

81. 31 g of ethylene glycol (C₂H₆O₂) is mixed with 500 g of solvent (K₁ of the solvent is 2 K kg mol⁻¹). What is the freezing point of the solution in K? (freezing point of solvent = 273 K)

(A) 272	(B) 271	(C) 270
(D) 274	(E) 275	

82. The standard reduction potential for Zn^{3*} / Zn, Ni^{2*} / Ni and Fe^{2*} / Fe are -0.76, -0.23 and -0.44 V respectively. The reaction X + Y^{2*} → X^{3*} + Y will have more negative ΔG value when X and Y are

(A) $X = Ni; Y = Fe$	(B) $X = Ni; Y = Zn$	(C) X = Fe; Y = Zn
(D) X = Zn; Y = Ni	(E) X = Fe; Y = Ni	. 1967 - 201 - 2006 - 202

Space for rough work

83. Thermal decomposition of ammonium dichromate gives

(A) N₂, H₂O and Cr₂O₃

(B) N₂, NH₃ and CrO

(C) (NH₄)₂CrO₄ and H₂O

(D) N2, H2O and CrO3

(E) N2, H2O and CrO

84. An element crystallising in body centred cubic lattice has an edge length of 500 pm. If its density is 4 g cm⁻³, the atomic mass of the element (in g moΓ¹) is (consider N₂ = 6×10²³)

(A)	100	(B) 2	50	(C) 125	
(D)	150	(E) 5	0		

85.

The rate constant of the reaction, $2N_2O_5 \rightarrow 4NO_2 + O_2$ at 300 K is 3×10^{-5} s⁻¹. If the rate of the reaction at the same temperature is 2.4×10^{-5} mol dm⁻³ s⁻¹, then the molar concentration of N₂O₅ is

(A)	0.4 M	(B)	0.8 M	(C) 0.04 M
(D)	0.08 M	(E)	0.6 M	

86. In the reaction A → Products when the concentration of A was reduced from 2.4 × 10⁻² M to 1.2 × 10⁻² M the rate decreased 8 times at the same temperature. The order of the reaction is

(A) 0 (B) 1 (C) 2 (D) 3 (E) 0.5

Space for rough work

87. Enzymatic reactions are given in Column I and enzymes in Column II

	Column I			Column II
(a)	Maltose Glucose		(i)	Zymase
(b)	Sucrose	20	(11)	Pepsin
(c)	Glucose → Ethyl alcohol + CO ₂		(iii)	Maltase
(d)	Starch - Maltose	-	(iv)	Invertase
(e)	Proteins - Amino acids		(v)	Diastase

Choose the correct matching of enzymatic reaction and enzyme that catalyses the correct reaction from the codes given below

- 88. In which one of the following properties, physisorption and chemisorption resemble each other?
 - (A) Force of attraction (B) Enthalpy of adsorption
 - (C) Temperature effect (D) Effect of surface area
 - (E) Number of adsorption layers

89. Consider the following two complex ions: [CoF₆]³⁻ and [Co(C₂O₄)₃]³. Which of the following statement(s) is/are false?

- (I) Both are octahedral
- (II) [Co(C2O4)3]3 is diamagnetic while [CoF6]3 is paramagnetic
- (III) Both are outer orbital complexes

(IV) In both the complexes the central metal is in the same oxidation state

- (A) (II) and (III) (B) (II), (III) and (IV) (C) (III) only
- (D) (III) and (IV) (E) (I), (II) and (IV)

Space for rough work

90.	Chlorophyll is a coordination compound of
	(A) iron (B) magnesium (C) manganese
	(D) chromium (E) zinc
91.	Which one of the following is a benzenoid aromatic compound?
	(A) Furan (B) Thiophene (C) Pyridine
	(D) Aniline (E) Cyclopentadienyl anion
92.	The major product obtained by the addition reaction of HBr to 4-Methylpent-1-ene in the presence of peroxide is
	(A) 1-Bromo-4-methylpentane (B) 4-Bromo-2-methylpentane
	(C) 2-Bromo-4-methylpentane (D) 3-Bromo-2-methylpentane
	(E) 2-Bromo-2-methylpentane
93.	Which one of the following involves nucleophilic addition?
	(A) Kolbe's reaction of phenol
	(B) Williamson's synthesis of ethers
	(C) Reimer-Tiemann's reaction of phenol
	(D) Kolbe's electrolytic synthesis of ethane from sodium acetate
	(E) Aldol formation from ethanal
94.	The number of possible stereoisomers of the compound CHy-CH=CH-CH; is
	(A) 2 (B) 4 (C) 3 (D) 5 (E) 6

95.	Some organic compounds are	given in	List I	and	their	uses	in	List	П.	Choose
	the correct matching									
	List I				List	11				

447624		
(a)	Transformethane	
(a)	Thodomethane	

- (b) p. p'-Dichlorodiphenyltrichloroethane
- (c) Trichloromethane

(iii) antiseptic

(iv) insecticide

(i)

(ii)

solvent for alkaloids?

propellant in aerosols

- (d) Dichloromethane
- (A) (a) (ii), (b) (iv), (c) (i), (d) (iii)
- (B) (a) (iii), (b) (iv), (c) (i), (d) (ii)
- (C) (a) (ii), (b) (i), (c) (iv), (d) (iii)
- (D) (a) (iii), (b) (i), (c) (iv), (d) (ii)
- (E) (a) (i), (b) (iii), (c) (ii), (d) (iv)

96. The total number of monohalogenated products formed by halogenation of 2,4,4-Trimethylhexane is

- (A) 5 (B) 7 (C) 6 (D) 8 (E) 9
- Number of acylic structural isomers of the compound having the molecular formula C₄H₁₀O is
 - (A) 4 (B) 5 (C) 6 (D) 7 (E) 3
- 375 mg of an alcohol reacts with required amount of methyl magnesium bromide and releases 140 mL of methane gas at STP. The alcohol is
 - (A) ethanol
 (B) n-Butanol
 (C) methanol

 (D) n-Propanol
 (E) phenol

Space for rough work

99.	Predict the	product (B)	in the	following	sequence of reactions	
						The spidle rise of a calle little	

Ethy	Benzene KMnD4-	KOH	H,0+		
(A)	Benzaldehyde	(B)	Benzophenone	(C)	Benzene
(D)	Acctophenone	(E)	Benzoic acid	L & STORY	14.2275125574

Freon 12 is manufactured from CCl₄ by
 (A) Wurtz reaction (B) Swarts reaction (C) Fittig reaction
 (D) Wurtz-Fittig reaction (E) Sandmeyer reaction

Which one of the following can be prepared by Gabriel phthalimide synthesis?
 (A) Aniline
 (B) *o*-Toluidine
 (C) Benzylamine
 (D) N-Methylethanamine
 (E) 4-Bromoaniline

102. 4-Nitrotoluene is treated with bromine to get compound 'P'. 'P' is reduced with Sn and HCI to get compound 'Q'. 'Q' is diazotised and the product is treated with phosphinic acid to get compound 'R'. 'R' is oxidized with alkaline KMnO₄ to get compound 'S'. Compound 'S' is

- (A) 2-Bromo-4-hydroxybenzoic acid
- (B) Benzoic acid
- (C) 4-Bromobenzoic acid
- (D) 3-Bromobenzoic acid
- (E) 2-Bromobenzoic acid

Space for rough work

Phy-Chy-I-A2/2016

[P.T.O.

103.	Narcotic	anal	gesic is	
------	----------	------	----------	--

- (A) Aspirin (B) Paracetamol (C) Codeine
- (D) Zantac

(E) Cimetidine

104. In double strand helix structure of DNA, heterocyclic base cytosine forms hydrogen bond with

(C) Purine

(C) Cysteine

- (A) Adenine (B) Guanine
- (D) Thyamine (E) Uracil

105. The amino acid containing mercaptan unit is

- (A) Leucine (B) Glutamine
- (D) Lysine (E) Isoleucine

106. Which one of the following is a non-reducing sugar?

 (A) Maltose
 (B) Lactose
 (C) Sucrose

 (D) Glucose
 (E) Fructose

Space for rough work

107.	In the hydrogen atomic spectrum, the emission of the least energetic photon takes place during the transition from $n = 6$ energy level to $n = \dots$ energy level.								
	(A) 1	(B)	3	(C)	5	(D)	4	(E)	2
108.	If 27 g of the mass o	water is f proper	formed one burnt i	during c is	omplete	combust	ion of p	ure pro	pene (C ₃ H ₆).
	(A) 42 g	(B)	21 g	(C)	14 g	(D)	56 g	(E)	40 g
109.	When 2.46 of anhydro 120 g mol	og of a ous salt ' ¹ what i	hydrated is obtai is the val	salt (M ned. If ue of x?	SO ₄ .x H ₂ the mole	O) is con ecular w	mpletely eight o	dehyd fanhy	frated, 1.20 g drous salt is
	(A) 2	(B)	4	(C)	5	(D)	6	(E)	7
110.	Identify the	e T-shap	ed mole	cule in t	the follow	ving			
-	(A) BF ₃	(B)	NH ₁	(C)	NF ₃	(D)	CIF ₃	(E)	PCl,
(in)	Which one	of the l	following	molecu	iles has th	he least o	fipole m	oment	2
olaka	(A) H ₂ O	(B)	BcF ₂	(C) I	VH ₂	(D)	NF3	(E)	BF ₃
112.	Dipole-dipole interaction energy between polar molecules in solids depends on the radius of the molecule (r) and it is directly proportional to								
	(A) (1/2)	(B)	(1/15)	(C)	(1/r)	(D)	(1/13)	(E)	(1/2)

Space for rough work

29

Phy-Chy-I-A2/2016

[P.T.O.

 Critical density of a gas having molecular weight 39 g mol⁻¹ is 0.1 g cm⁻³. Its critical volume in L mol⁻¹ is

(A) 0.390 (B) 3.90 (C) 0.039 (D) 39.0 (E) 390

114. The various types of hydrides and examples of each type are given below

Tana I M T M T M T M T			Combonna
n deficient		(i)	Liff
	\sim	(ii)	CH4
m-precise		(iii)	NH ₃
tial		(iv)	B ₂ H ₆
on rich		(v)	CrH
	n deficient m-precise tial on rich	n deficient - 	n deficient - (i) - (ii) n-precise - (iii) tial - (iv) on rich - (v)

Choose the correct matching from the codes given below

- (A) (a) (ii), (b) (iv), (c) (v), (d) (iii), (c) (i)
- (B) (a) (iv), (b) (i), (c) (ii), (d) (v), (c) (iii)
- (C) (a) (iv), (b) (iii), (c) (v), (d) (ii), (c) (i)
- (D) (a) (v), (b) (iii), (c) (iv), (d) (ii), (c) (i)
- (E) (a) (iv), (b) (v), (c) (i), (d) (ii), (c) (iii)
- 115. One mole of hydrazine (N₂H₄) loses 10 moles of electrons in a reaction to form a new compound X. Assuming that all the nitrogen atoms in hydrazine appear in the new compound, what is the oxidation state of nitrogen in X? (Note: There is no change in the oxidation state of hydrogen in the reaction)

(A) -1 (B) -3 (C) +3 (D) +5 (E) +1

Space for rough work
116,	The of t	low sol	ubility rties o	y of LiF a of the alk	ind that ali meta	of Cs1 in d ions?	water a	re respe	ctively	due to wh	ich
	 (A) higher hydration enthalpy of Li*, higher lattice enthalpy of Cs* (B) smaller hydration enthalpy of Li*, higher lattice enthalpy of Cs* 										
	(C) (D) (E)	 (C) smaller lattice enthalpy of Li[*], higher hydration enthalpy of Cs[*] (D) smaller hydration enthalpy of Li[*], smaller lattice enthalpy of Cs[*] (E) higher lattice methalpy of Li[*] 									
117.	The	second als is the	ioniz highe	ration en	thalphy	of which	h of th	e follos	wing a	lkaline ca	rth
	(A)	Ba	(B)	Mg	(C)	Ca	(D)	Sr	(E)	Be	
118.	Whi	ich one o	of the	followin	R BLON	o 16 elem	ents do	es not e	xist in	-2 oxidati	on
	(A)	S	(B)	Se	(C)	0	(D)	Po	(E)	Te	
119.	In w pair	hich on of electr	e of t	he follow	ving co	mpounds n?	of xen	on, high	est nu	mber of lo	ne
	(A)	XeF ₆	(B)	XeF ₄	(C)	XeOF ₄	(D)	XcO ₁	(E)	XeF ₂	
120.	The with	hybridiz aqueous	ed sta s acid	ite of Al ³ is	* in the	e complex	ion for	med wh	en Al	Cl ₃ is treat	ed
	(A)	sp ³	(B)	dsp ²	(C)	sp ³ d ²	(D)	sp ² d	(E)	sp ²	

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
94
95
67
00
00
100
199
101
102
10.3
104
105
106
107
108
169
110
111
112
113
114
115
116
117
118
110
126

10 E
8
A
F
D
C
8
8
D
A
D
B
D
P
0
0
C
B
D
A
E
A
H
e
<u>u</u>
U
E
8
C
E
C
B
C
6
6
8
E
D
B
E
A
B
C
1
-
0
E
C

- 73. Uncertainty principle is valid for
 - (A) Proton (B) Methane (C) Both (A) and (B)
 - (D) 1 µm sized platinum particles (E) -1 µm sized NaCl particles

74. The energy of an electron in the 3S orbital (excited state) of II-atom is

- (A) -1.5 eV (B) 13.6 eV (C) -3.4 eV
- (D) -4.53 eV (E) 4.53 eV

75. Among the following, the molecule that will have the highest dipole moment is

- (A) H₂ (B) HI (C) HBr
- (D) HCI (E) HF
- 76. Which of the following pair have identical bond order?
 - (A) CN^{-} and NO^{+} (B) CN^{-} and O_{2}^{+} (C) CN^{-} and CN^{+}
 - (D) NO^{*} and O₂ (E) O_2 and CN^{*}
- 77. A gas will approach ideal behaviour at
 - (A) Low temperature and low pressure
 - (B) Low temperature and high pressure
 - (C) High temperature and low pressure
 - (D) High temperature and high pressure
 - (E) Low volume and high pressure
- 78. Pressure of ideal and real gases at 0 K are
 - (A) ≥ 0 and 0 (B) ≤ 0 and 0 (C) 0 and 0
 - (D) ≥ 0 and ≥ 0 (E) 0 and ≥ 0

79. For the process

A $(l, 0.05 \text{ atm. } 32^{\circ}\text{C}) \rightarrow \text{A} (g, 0.05 \text{ atm. } 32^{\circ}\text{C}).$ The correct set of thermodynamic parameters is (A) $\Delta G = 0$ and $\Delta S = \text{ve}$ (B) $\Delta G = 0$ and $\Delta S = \pm \text{ve}$ (C) $\Delta G = \pm \text{ve}$ and $\Delta S = 0$ (D) $\Delta G = -\text{ve}$ and $\Delta S = 0$ (E) $\Delta G = 0$ and $\Delta S = 0$

80. Mixing of N₂ and H₂ form an ideal gas mixture at room temperature in a container. For this process, which of the following statement is true?

(A) $\Delta H = 0$, $\Delta S_{surrounding} = 0$, $\Delta S_{system} \sim 0$ and ΔG ve (B) $\Delta H = 0$, $\Delta S_{surrounding} = 0$, $\Delta S_{system} \geq 0$ and ΔG ve (C) $\Delta H \geq 0$, $\Delta S_{surrounding} \equiv 0$, $\Delta S_{system} \geq 0$ and $\Delta G \geq$ ve (D) $\Delta H \leq 0$, $\Delta S_{surrounding} \geq 0$, $\Delta S_{system} \leq 0$ and $\Delta G = -ve$

(E) $\Delta H = 0$, $\Delta S_{surrounding} = 0$, $\Delta S_{system} \le 0$ and $\Delta G = -vc$

81. Which of the following is not true about a catalyst?

- (A) Mechanism of the reaction in presence and absence of catalyst could be different
- (B) Enthalpy of the reaction does not change with catalysts
- (C) Catalyst enhances both forward and backward reaction at equal rate.
- (D) Catalyst participates in the reaction, but not consumed in the process.
- (E) Use of catalyst cannot change the order of the reaction.
- 82. In the ln K vs. $\frac{1}{T}$ plot of a chemical process having $\Delta S^{\circ} \ge 0$ and $\Delta H^{\circ} \le 0$ the

slope is proportional to (where K is equilibrium constant)

(A)	$ \Delta H^{\circ} $	(B) ΔH°	(C) ΔS^{ψ}
(D)	ΔS^{o}	(E) ΔG°	

83. For the process

 $\frac{3}{2}A \rightarrow B$, at 298 K, ΔG° is 163 kJ mol⁻¹. The composition of the reaction mixture is [B] = 1 and [A] = 10000. Predict the direction of the reaction and the relation between reaction quotient (Q) and the equilibrium constant (K)

- (A) forward direction because Q > K.
- (B) reverse direction because Q > K
- (C) forward direction because $Q \le K$.
- (D) reverse direction because $Q \le K$.
- (E) it is at equilibrium as Q = K.
- 84. Solubility product (K_{sp}) of saturated PbCl₂ in water is $1.8 \times 10^{-4} \text{ mol}^3 \text{ dm}^3$. What is the concentration of Pb²¹ in the solution?
 - (A) $(0.45 \times 10^{-4})^{1/3} \text{ mol dm}^{-3}$
 - (B) $(1.8 \times 10^{-4})^{1/3}$ mol dm⁻⁴
 - (C) $(0.9 \times 10^{-4})^{5/3}$ mol dm⁻⁵
 - (D) $(2.0 \times 10^{-4})^{1/3}$ mol dm ³
 - (E) $(2.45 \times 10^{-4})^{1/3}$ mol dm⁻²
- 85. The freezing point of equimolal aqueous solutions will be highest for
 - (A) $C_6H_5NH_1Cl$ (B) AgNO₃ (C) $Ca(NO_3)_2$ (D) $La(NO_3)_1$ (E) D-fractose
- 86. The molality of the 3M solution of methanol if the density of the solution is 0.9 g cm^{-3} is

(A)	3.73	(B) 3.0	(C)	3.33
(D)	3.1	(E) 3.2		

89 . 90. 91.	10 g of MgCO ₂ d cent purity of Mg (A) 24 % (D) 74 % The compound N (A) 4 (D) 7 Hybridisation of a (A) sp^2 (D) sp^3d^2	$\begin{array}{c} \text{(B)} & 44 \ \% \\ \text{(E)} & 84 \ \% \\ \text{(B)} & 5 \\ \text{(B)} & 5 \\ \text{(E)} & 8 \end{array}$ $\begin{array}{c} \text{(B)} & 5 \\ \text{(E)} & 8 \\ \text{(E)} & sp^3 \\ \text{(E)} & sp^2 d^3 \end{array}$	(C) H ₂ O by ma (C)	CO ₂ and 4 g MgO The pe 54 % ass. The value of "x" is 6				
89 . 90. 91.	 10 g of MgCO₂ d cent purity of Mg (A) 24 % (D) 74 % The compound N (A) 4 (D) 7 Hybridisation of a (A) sp² 	$\begin{array}{c} \text{CO}_{3} \text{ is} \\ \text{(B)} & 44 \% \\ \text{(E)} & 84 \% \\ \text{(E)} & 84 \% \\ \text{(B)} & 5 \\ \text{(B)} & 5 \\ \text{(E)} & 8 \\ \end{array}$ $\begin{array}{c} \text{(B)} & 5 \\ \text{(E)} & 8 \\ \end{array}$ $\begin{array}{c} \text{(B)} & \text{sp}^{3} \\ \text{(B)} & \text{sp}^{3} \\ \end{array}$	(C) H ₂ O by ma (C)	CO ₂ and 4 g MgO. The pe 54 % ass. The value of "x" is 6 <i>sp⁰d</i>				
89 . 90. 91.	 10 g of MgCO₂ d cent purity of Mg (A) 24 % (D) 74 % The compound N (A) 4 (D) 7 Hybridisation of a 	CO ₃ is (B) 44 % (E) 84 % (E) 84 % (A ₂ CO ₃ •••• H ₂ O has 50 % (B) 5 (E) 8 (E) 8	(C) H ₂ O by ma (C)	CO ₂ and 4 g MgO The pe 54 % ass. The value of "x" is 6				
89. 90.	10 g of MgCO ₂ d cent purity of Mg (A) 24 % (D) 74 % The compound N (A) 4 (D) 7	COmposes on neating t CO ₂ is (B) 44 % (E) 84 % a ₂ CO ₃ •x H ₂ O has 50 % (B) 5 (E) 8	(C) H ₂ O by ma (C)	CO ₂ and 4 g MgO. The pe 54 % ass. The value of "x" is 6				
89. 90.	 10 g of MgCO₂ d cent purity of Mg (A) 24 % (D) 74 % The compound N (A) 4 (D) 7 	CO ₃ is (B) 44 % (E) 84 % (C) 84 % (A) CO ₃ -x H ₂ O has 50 % (B) 5	(C) H ₂ O by ma (C)	CO ₂ and 4 g MgO. The pe 54 % ass. The value of "x" is 6				
89. 90.	10 g of MgCO ₂ d cent purity of Mg (A) 24 % (D) 74 % The compound N	COmposes on neating t CO ₂ is (B) 44 % (E) 84 % a ₂ CO ₃ .x H ₂ O has 50 %	(C) H ₂ O by m:	CO ₂ and 4 g MgO. The pe 54 % ass. The value of "x" is				
89.	10 g of MgCO ₂ d cent purity of Mg (A) 24 % (D) 74 %	(E) 84 %	(C)	CO ₂ and 4 g MgO. The pe				
89.	 10 g of MgCO₂ d cent purity of Mg (A) 24 % (D) 74 % 	COmposes on neating t CO ₃ is (B) 44 % (E) 84 %	(C)	CO ₂ and 4 g MgO. The pe				
89.	 10 g of MgCO₂ d cent purity of Mg (A) 24 % 	COmposes on nearing t CO ₃ is		CO ₂ and 4 g MgO. The pe				
89.	 10 g of MgCO₂ d cent purity of Mg 	ccomposes on neating 1 CO ₃ is	lo U.1 mole	CO ₂ and 4 g MgO. The pe				
	10 g of MgCO ₂ decomposes on heating to 0.1 mole CO ₂ and 4 g MgO. The performance M_{2} CO ₂ is							
	(E) Both (C) and	L (D)						
	(D) Cell voltage at above said equilibrium is 1.35 V							
	(C) HgO electrode potential is more than Zn(Hg) electrode							
	 (B) Zu(Hg) electroile potential is more than HgO electroite potential 							
	(Δ) . Z p(Ha) electrode notantial is equal to He() electrode output int							
	- under this equilibrium, what is the relation between the potential of the Zn(Hg) and HgO electrodes measured assingt the standard hydrogen electrode?							
	-Zn(Hg) + HgO(s) Under this could?	$\neq ZnO(s) + Hg(l)$		the material of the 2-dia				
	(Zn(Hg)) and Hg(J electrodes in mercury	cell,					
88.	Consider the equilibrium obtained by electrically connecting zinc-amalgam							
	(D) 4×10^{-5} s	(E) $5 \times 10^{\circ}$ s						
	(A) $1 \times 10^{\circ}$ s	(B) $0.5 \times 10^{\circ}$ s	(C)	2 × 10" s				
		6						
	(Assume I F – 96	500 C / mole of electro	uts)					
	fuel cell is open (Assume I F - 96	ated at 96.5 mA curre 500 C / mole of electro	ent, how 1 ms)	ong will it deliver power				

.

- **92.** The common features among CO, CN⁻ and NO⁺₂ are
 - (A) Bond order three and isoelectronic
 - (B) Bond order three and weak field ligands
 - (C) Bond order two and π-acceptors
 - (D) Bond order three and π-donors
 - (E) Isoelectronic and strong field ligands

93. Which of the following is covalent?

- (A) NaCl (B) KCl (C) BeCl₂
- (D) MgCl₂ (E) CaCl₂
- 94. One mole of an unknown compound was treated with excess water and resulted in the evolution of two moles of a readily combustible gas. The resulting solution was treated with CO_2 and resulted in the formation of white rurbidity. The unknown compound is
- 95. When potassium is reacted with water, which compound(s) is (are) formed preferentially?
 - (A) K_2O (B) KO_2 (C) Both K_2O and KO_2 (D) K_2O_2 (E) K_2O_3
- 96. Purification of aluminium by electrolytic refining is called
 - (A) Hall's process (B) Froth flotation process
 - (C) Bayer's process (D) Hoope's process
 - (E) Scrpeck's process

Space for rough work

97. Select the most appropriate statement

In BF3

- (A) All the bonds are completely ionic
- (B) The B F bond is partially ionic
- (C) B-F bond has partial double bond character
- (D) Bond energy and bond length data indicates single bond character of the B-F bond
- (E) All the bonds are covalent
- 98. The inert gas found most abundant in the atmosphere is
 - (A) He (B) Ne (C) Ar (D) Kr (E) Xe

99. When MnO₂ is fused with KOII and KNO₂, a coloured compound is formed. Choose the right compound with the appropriate colour

- (A) K₂MnO₄, green (B) KMnO₄, purple (C) Mn₂O₃, brown
- $(D) \quad Mn_3O_4, \ black \qquad (E) \quad MnO_2, \ black$
- 100. Identify the case(s) where there is change in oxidation number
 - (A) Acidified solution of CrO_4^{2-}
 - (B) SO₂ gas bubbled through an acidic solution of $Cr_2O_1^{2^+}$
 - (C) Alkaline solution of $Cr_2O_7^{2n}$
 - (D) Ammoniacal solution of CrO₄²⁺
 - (E) Aqueous solution of CrO₂Cl₂ in NaOH
- 101. Water gas is produced by
 - (A) Passing steam over red hot coke
 - (B) Passing steam and air over red hot coke
 - (C) Burning coke in excess air
 - (D) Burning coke in limited supply of air
 - (E) Both (A) and (B)

102. The volume of oxygen liberated at STP from 15 mJ, of 20 volume H₂O₂ is

- (A) 100 mL (B) 150 mL
- (D) 250 mL (E) 300 mL

103. Corundum is _____ mineral of aluminium.

- (A) Silicate (B) Oxide (C) Double salt
- (D) Sulphate (E) Nitrate

104. The solution which does not produce precipitate when treated with aqueous K_2CO_2 is

(A) $BaCl_2$ (B) $CaBr_2$ (C) $MgCl_2$ (D) Na_2SO_4 (E) $Pb(NO_1)_2$

105. If the hoiling point difference between the two liquids is not much, then ______ method is used to separate them.

- (A) simple distillation (B) d
 - (B) distillation under reduced pressure

(C) 200 mL

- (C) steam distillation (D)
 - (D) fractional distillation
- (E) differential extraction

106. Lassaigne's test (with silver nitrate) is commonly used to detect halogens such as chlorine, bromine and iodine but not useful to detect fluorine because the product AgF formed is

(A) volatile(B) reactive(C) explosive(D) soluble in water(E) a liquid

107. Protein is a polymer made of

- (A) carbohydrates (B) amino acids (C) nucleic acids
- (D) carboxylic acids (E) polycyclic aromatics
- 108. The letter 'D' in D-carbohydrates represents
 - (A) dextrorotation(B) direct synthesis(C) configuration(D) mutarotation(E) optical activity

- 109. Phenol is a highly corrosive substance, but its 0.2 per cent solution is used as
 - (A) antibiotic

(B) antiseptic

(C) disinfectant

- (D) antihistamine (E) antacid
- 110. Name of the following reaction is

 $\xrightarrow{I) CO_2, NaOH} \xrightarrow{OH} CO_2H$ (A) Reimer-Tiemana (B) Kolbe-Schmitt (C) Caunizzaro (E) Gattermann-Koch (D) Gattermann

111. X and Y in the below reaction are ----- and -----, respectively

$$C_6H_5 - CO_2H + X \xrightarrow{heat} C_6H_5 - COCI \xrightarrow{H_2,Pd/BaSO_4} Y$$

- (E) SOCI₂ and C₆H₅CH₂Cl
- (A) SOCl₂ and C_6H_5CHO (B) (COCl)₂ and $C_6H_5CH_4$
- (C) SOCI₂ and $C_6H_5CH_3$ (D) (COCI)₂ and $C_6H_5CH_2OH$
- 112. The reaction of propene with HBr in presence of peroxide proceeds through the intermediate
 - (A) $H_3C CH CH_3$ (C) $H_1C-CH-CH_2$
- (B) H₃C CH CH₂Br
- (D) H₃C--CH₂--ČH₂
- (E) None of the above

113. The major product P formed in the following reaction is

- 114. The correct increasing order of the acid strength of acids, butyric acid (I), 2-chlorobutyric acid (II), 3-chlorobutyric acid (III) and 2,2-dichtorobutyric acid (IV) is
 - (A) $1 \le II \le III \le IV$ (B) $III \le II \le IV \le I$ (C) $I \le III \le IV \le IV$
 - (D) $III \leq I \leq II \leq IV$ (E) $IV \leq III \leq II \leq I$
- 115. Cycloheptatrienyl cation is
 - (A) non-benzenoid and non-aromatic
 - (B) non-benzenoid and aromatic
 - (E) non-benzenoid and anti-aromatic

(C) benzenoid and non-aromatic

(D) benzeuoid and aromatic

- 116. The correct order of increasing reactivity of the following alkyl halides, CH₂CH₂CH(Br)CH₃ (I), CH₃CH₂CH₂CH₂CH₂Br (II), (CH₃)₂CCICH₂CH₃ (III) and CH₃CH₂CH₂CI (IV) towards S_N2 displacement is
 (A) I ≤ II ≤ III ≤ IV (B) III ≤ I ≤ IV ≤ II (C) III ≤ I ≤ IV ≤ IV
 (D) II ≤ IV ≤ I ≤ III (E) I ≤ III ≤ II ≤ IV
- 117. The strongest base among the following is
 - (A) amide ion (B) hydroxide ion (C) trimetbylamine
 - (D) ammonia (E) aniline
- 118. The condensation reaction between one equivalent of acctone and two equivalents of henzaldchyde in presence of difute alkali leads to the formation of
 - (A) benzalacetophenone
 - (C) dibenzylideneacetone
- (B) benzylideneacetone
- (D) benzoic acid and acette acid
- (E) only benzoic acid.
- 119. The product Y for the below reaction is

Space for rough work

120. The product formed in the following reaction is

Space for rough work

.

_

BLANK PAGE

.

.

.

73	0
74	
75	E
70	
70	
77	0
16	
19	8
80	
83	E
82	
63	
84	A
85	E
80	Α
87	¢
88	A
89	E
90	C
91	В
92	A
9.1	C
94	в
95	٨
96	A
97	C
98	C
99	A
100	8
101	A
102	E.
103	B
104	0
105	0
105	0
107	
108	0
105	0
140	0
444	
647	0
112	8
113	0
114	0
115	8
115	8
117	A
118	C
119	C
120	A

Whit	ch clemen	t has the	e highest l	first ioniza	tion pote	ntial?			
(A)	N	(B) N	le ((C) He	(D)	H	(E)	Li	
Whit	ch stateme	ent(s) is	(are) false	for the pe	riodic cla	issific	ation of c	lements?	
(A)	The prop numbers	erties o	f the elen	ients are t	he period	lic fu	nctions of	their at	omic
(B)	Non-met	illic ele	ments are	lesser in r	umber th	an the	2 metallic	elements	\$
(C)	The first a regular	ionizati manner	on energie with incr	es of the e case in ato	lements a intic num	dong ber	a period d	lo not va	ry in
(D)	For trans increase	sition el in atomi	lements, c number	the d-cleo	trons and	: fille	d monote	mically	with
(E)	Both (C)	and (D)							
The	electroneg	ativitie	of N, C,	Si and P a	re in the	order			
(A)	P < Si < (C < N	(B)	Si < P < 1	N <c< td=""><td>(C)</td><td>Si < P <</td><td>C < N</td><td></td></c<>	(C)	Si < P <	C < N	
(D)	P < Si < 1	N <c< td=""><td>(E)</td><td>Difficult</td><td>to predict</td><td></td><td></td><td></td><td></td></c<>	(E)	Difficult	to predict				
Gd(6	(4) has		unpai	red electro	ns with s	um of	spin		
(A)	7,3.5	(B) 8	3 (0	6,3	(D)	8,4	(E)	9, 3.5	
Whe	n SO ₂ gas	is pass	ed into aqu	icous Na ₂	CO ₃ the J	oroduc	a(s) form	ed is(are)	6
(Δ)	NaHSO ₄		(B)	Na ₂ SO ₄		(C)	NaHSO ₂		
(D)	Na ₂ SO ₃ a	nd NaH	ISO (E)	NallSO4	and Na2S	04			
Portl	and ceme	nt does	not contai	n					
(A)	CaSiO ₄		(B)	CaSiO ₃		(C)	Ca ₃ Al ₂ O	6	
(D)	Ca ₂ (PO ₄)	ž	(E)	Both (C)	and (D)				

Phy-Chy-I-A1/2018

[P.T.O.

79.	Al ₂ (SO ₄) ₃ is used in the following but not							
	(A) As a coagulant in treating drinking water and sewage							
	(B) In plastics industry (C) As a mordant in dveing							
	(D) In paper industry (E) Both (C) and (D)							
80.	Maximum number of covalent bonds formed by N and P are							
	(A) 3,5 (B) 3,6 (C) 3,4.5							
	(D) 3, 4, 6 (E) None of the above							
81.	Consider the following statements concerning NoH.							
	1. It is an exothermic compound							
	It burns in air with the evolution of heat							
	It has kinetic stability							
	 It reduces Fe³⁺ to Fe²⁺ in acidic medium 							
	Which of the following combination is correct?							
	(A) 2 and 3 are correct (B) 1 and 2 are correct (C) All are correct							
	(D) 3 and 4 are correct (E) 2, 3 and 4 are correct							
82.	Consider the following species							
	1. $[O_2]^2$ 2. $[CO]^+$ 3. $[O_2]^+$							
	Among these sigma bond alone is present in							
	(A) I alone (B) 2 alone (C) 3 alone (D) 1 and 2 (E) 1, 2 and 3							
83.	Select the correct option(s) for the following statements							
	1. Cl ₂ O and ClO ₂ are used as bleaching agents							
	2. OCI salts are used as detergents							
	3. OCI disproportionates in alkaling medium							
	 BrO₃⁻ is oxidized in acidic medium 							
	(A) 1, 2, 3 correct (B) 2, 3, 4 correct (C) 1, 2, 4 correct							
	(D) 1, 3, 4 correct (E) All are correct							
	Contract Statement and the second							

Phy-Chy-I-A1/2018

24

84.	When H2O2 is added to an acidified K2Cr2O2 solution
	 (A) A green colour solution is obtained (B) A yellow solution is obtained (C) A blue-violet solution is obtained (D) A green precipitate is formed (E) A yellow precipitate is formed
85.	Consider the following compounds 1. (NH ₄) ₂ Cr ₂ O ₂ 2. NH ₄ NO ₂ 3. NH ₄ VO ₃ 4. NH ₄ NO ₃ Which compound(s) yield nitrogen gas upon heating?
	(A) 1 and 2 (B) 2 and 3 (C) 3 and 4 (D) 1 and 4 (E) All
86.	How many peroxy linkages are present in CrC).2
	(A) 1 (B) 2 (C) 3 (D) 4 (E) 5
87,	More than four bonds are made by how many elements in carbon famile?
	(A) 1 (B) 2 (C) 3 (D) 4 (E) 5
88.	The effective nuclear charge of an element with three valence electrons is 2,60. What is the atomic number of the element?
	(A) 1 (B) 2 (C) 3 (D) 4 (E) 5
89.	 The elution sequence of a mixture of compounds containing chlorobenzene, anthracene and <i>p</i>-cresol developed on an alumina column using a solvent system of progressively increasing polarity is (A) anthracene → chlorobenzene → <i>p</i>-cresol (B) anthracene → <i>p</i>-cresol → chlorobenzene (C) chlorobenzene → <i>p</i>-cresol → anthracene (D) chlorobenzene → anthracene → <i>p</i>-cresol
	(E) p-cresol+ anthracene -+ chlorobenzene
_	(E) p-cresol+ anthracene -+ chlorobenzene

Phy-Chy-I-A1/2018

25

[P.T.O.

Phy-Chy-I-A1/2018

95	Neopentyl bromide undergoes dehydrohalogenation to give alkenes even though it has no β-hydrogen. This is due to
	 (A) E2 mechanism (B) E1 mechanism (C) Rearrangement of carbocations by E1 monhanism
	(D) E1cB mechanism (E) Ei mechanism
90.	The compound which does not lead to nitrile by substitution with NaCN/DMSO is
	 (A) benzyl chloride (B) ethyl chloride (C) isopropyl chloride (D) chlorobenzene (E) isobutyl chloride
97.	Oxidation of 1" alcohols to aldehydes is very successful for the standart of
	 (A) pent-2-yn-1-ol (B) 1-hexanol (C) approved a to to
	(D) 1-pentanol (E) 1-octanol
98.	The compound that does not undergo huloform constiants
	(A) acetaldehyde (B) ethanol (C)
	(D) acetophenone (E) propiophenone
99,	The halogen compound which will not react with about 1
	(A) ethyl chloride (B) methyl chloride (C) to give ethers is
	(D) vinyl chloride (E) allyl chloride
100,	The weakest among the following wide in
	(A) peroxyacetic acid (B) acetic acid
	(D) trichloroacetic acid (E) propanoic acid (C) chloroacetic acid
191. T	The nitrosation of N.N-dimethylaniline takes place through the attack of
3	(A) nitronium ion (B) protonated nitrons with
	(C) nitrous acid (D) nitrite ion (E) nitrosconium land
	Space for rough work

Phy-Chy-I-A1/2018

27

[P.T.O.

102.	The nitrogenous base pr	esent only in RNA is
	(A) guanine	(B) adenine (C) cytosine
	(D) uracil	(E) thymine
103,	Green fuel is the fuel ob	tained from
	(A) bio-waste	(B) metal waste (C) plastic waste
	(D) chemical waste	(E) electronic waste
104.	Barbiturates are potent	
	(A) hypnotics	(B) antimicrobials (C) antacids
	(D) antiseptics	(E) antiallergics
105.	1 mole of FeSO ₄ (ato Fe ₂ (SO ₄) ₂ . Calculate the	mic weight of Fe is 55.84 g mol ⁻¹) is oxidized to e equivalent weight of ferrous ion
	(A) 55.84	(B) 27.92 (C) 18.61
	(D) 111.68	(E) 83.76
106.	Mass % of carbon in eth	nanol is
	(A) 52 (B) 13	(C) 34 (D) 90 (E) 80
107.	One mole of ethanol is standard enthalpy of for enthalpy of the reaction	produced reacting graphite, H ₂ and O ₂ together. The ormation is -277.7 kJ mol ⁻¹ . Calculate the standard when 4 moles of graphite is involved
	(A) -277.7 (B) -55	55.4 (C) -138.85 (D) -69.42 (E) -1110.8
100.	Which of the following	process best describes atomization of CH _g (g)?
108.		(IN IN LAR
198.	(A) Exothermic	(B) Endothermic (C) Non-spontaneous

Phy-Chy-I-A1/2018

109. Consider the equilibrium $X_2 + Y_2 = 27P$. Find the stoichiometric coefficient of the P using the data given in the following table.

$X_2 / \text{mol } L^{-1}$	$Y_2 / mol L^{-1}$	P/mol L ⁻⁴
1.14×10^{-2}	0.12×10^{-2}	2.52×10^{-2}
0.92×10^{-2}	0.22×10^{-2}	3.08×10^{-2}

Which of the following can help predict the rate of a reaction if the standard 110. Gibbs free energy of reaction $(\triangle_{\gamma} G^{-})$ is known?

(D) 0.5

(E) 4

[P.T.O.

(C) 3

(A) Equillibrium constant (B) A.H. (C) A, U

(D) Heat liberated during the course of reaction in calorimeter

(E) Both (B) and (A)

111. Calculate the molarity of a solution containing 5 g of NaOH dissolved in the product of a H2 - O2 fuel cell operated at 1 A current for 595.1 hours. (Assume 1F = 96500 C/mol of electrons and molecular weight of NaOH as 40 g mol 1)

(A) 0.05 M (B) 0.025 M (C) 0.1 M (D) 0.075 M (E) 1 M

112. If I mole of NaCl solute is dissolved into the I kg of water, at what temperature will water boil at 1.013 bar ? (K_b of water is 0.52 K kg mol⁻¹)

(A) 373.15 K	(B) 373.67 K	(C)	374.19 K
(D) 373.19 K	(E) 375 K		

Space for rough work

113. Consider the electrochemical reaction between Ag(s) and Cl₃(g) electrodes in 1 fitre of 0.1 M KCl aqueous solution. Solubility product of AgCl is 1.8×10⁻¹⁰ and F = 96500 C/mol. At 1 μA current, calculate the time required to start observing the AgCl precipitation in the galvanic cell

(A)	173 s	(B) 346 s	(C) $1.25 \times 10^{\circ}$ s
(D)	1.25×10^{5} s	(E) 101 s	

- 114. The voltage of the cell consisting of Li(s) and F₂(g) electrodes is 5.92 V at standard condition at 298 K. What is the voltage if the electrolyte consists of 2 M LiF. (In 2 = 0.693, R = 8.314 J K⁻¹ mol⁻¹ and F = 96500 C mol⁻¹)
 (A) 5.90 V (B) 5.937 V (C) 5.88 V (D) 4.9 V (E) 4.8 V
- 115. Consider the galvanic cell, Pt(s)[H₂(1 bar)[HCl(aq)(1 M)[Cl₂(1 bar)]Pt(s). After running the cell for sometime, the concentration of the electrolyte is automatically raised to 3 M HCl. Molar conductivity of the 3 M HCl is about 240 S cm² mol⁻¹ and limiting molar conductivity of HCl is about 420 S cm²mol⁻¹. If K_b of water is 0.52 K kg mol⁻¹, calculate the boiling point of the electrolyte at the end of the experiment.

(A) 375.6 K (B) 376.3 K (C) 378.1 K (D) 380.3 K (E) 381.6 K

116. The data given below are for the reaction of A and D₂ to form product at 295 K. Find the correct rate expression for this reaction.

D+/molL	A/mol L	Initial rate / m	iol L '≲
0.05	0.05	1×10 ⁻³	
0.15	0.05	3×10 ⁻³	
0.05	0.15	9×10 ⁻³	
A) $k[D_2]^1[A]^2$	(B) k	$[D_2]^2[A]^4$	(C) $k[D_2]^{\dagger}[A]$
D) $4[D_2]^2[A]^2$	(E) k	$[D_2]^1[A]^0$	

Space for rough work

Phy-Chy-I-A1/2018

- 117. Find the unit of the rate constant of a reaction represented with a rate equation, rate = k[A]^{1/2}[B]^{3/2}
 - (A) $mol^{-1}Ls^{-1}$ (B) s^{-1} (C) $mol L^{-1}s^{-1}$
 - (D) $mo\Gamma^2 L^2 s^{-1}$ (E) $mo\Gamma^3 L^3 s^{-1}$
- 118. Under what condition the order of the reaction,

 $2HI \xrightarrow{A_1 \text{catalyst}} H_2(g) + l_2(g)$, is zero

- (A) At high temperature (B) At high partial pressure of HI
- (C) At low partial pressure of H1 (D) At high partial pressure of H2
- (E) At high partial pressure of l₂
- 119. Which of the following statement is true about the adsorption?

(A) $\Delta H \le 0$ and $\Delta S \le 0$ (B) $\Delta H \ge 0$ and $\Delta S \le 0$

- (C) $\Delta H \le 0$ and $\Delta S \ge 0$ (D) $\Delta H = 0$ and $\Delta S \le 0$
- (E) $\Delta H = 0$ and $\Delta S > 0$
- 120. In NH₃ synthesis by Haber's process, what is the effect on the rate of the reaction with the addition of Mo and CO, respectively?
 - (A) Increases and decreases (B). Decreases and decreases
 - (C) Decreases and increases (D) Both Mo and CO increases the rate
 - (E) Both Mo and CO does not affect the rate

BLANK PAGE

Phy-Chy-I-A1/2018

SEAL

73	C
74	D
75	C
76	D
77	D
78	D
79	В
80	A
81	A
82	A
83	c
84	C
85	A
86	8
87	D
88	E
89	A
90	C
91	A
92	A
93	C
94	C
95	C
96	0
97	A
98	ε
99	D
100	A
101	E
102	D
103	A
104	A
105	A
105	A
107	8
108	E
109	8
110	D
111	8
112	C
113	A
114	A
115	A
116	A
117	A
118	8
119	
420	-

	(12)	3.3	104			
74.	Whi	ch hydride amongst t	he follo	wing has the least boi	ling poin	nt?
	(A)	NH ₃	(B)	PH1	(C)	AsH ₂
	(D)	SbH ₃	(E)	BiH ₂		
75.	Whi	ch of the following se	ts has l	ewis acid behaviour	for all th	e components'
	(A)	BF ₃	(B)	BF3, SiF4, PF3	(C)	SiF4, PF5
	(D)	BF ₃ , PF ₅	(E)	(A) and (B)	23	
76.	The	carbon atoms in calci	um carb	oide are held by		
	(A)	Ionic bonds				
	(B)	Two sigma bonds				
	(C)	Two sigma and one	coordin	ate bond		
	(D)	One sigma and two	π bonds			
	(E)	One sigma and one	t bond			
77.	Acc	ording to the VSEPR	theory,	the shape of ClO3 w	ould be	
	(A)	Linear	(B)	Triangular planar	(C)	Pyramidal
	(D)	Square planar	(E)	Angular		
78.	Ace	tic acid in liquid amm	ionia be	haves as		
	(A)	Weaker acid than th	at in wa	ter		
	(B)	Stronger acid than th	hat in wa	iter		
	(C)	Base acid				
	(D)	Neutral acid				
	(E)	(C) and (D)				
79.	The	compound(s) that do	es(do) n	ot exist is(are)		
	(A)	BiF ₅	(B)	PF ₅	(C)	AsF ₅
	(D)	SbFs	(E)	All the compounds of	exist	0
			Space	for rough work		1

Phy-Chy-I-A1/2019

	(A) Hydrogen bonding			
	(B) Dipole-dipole interac	tion	NUMBER OF STREET, STRE	
	(C) Induced dipole-induc	ed dip	ole interaction	
	(D) Dipole-induced dipol	e inter	action	
	(E) (A) and (D)			
81.	An example of a non-stoicl	ionic	ric oxide when heated	is
07534102P0	(A) BeO	(B)	ZnO	(C) MgO
	(D) CaO	(E)	Li ₂ O	
82.	The donor atom in EDTA a	ire		
	(A) Two N and two O	(B)	Two N and four O	(C) Four N and two O
	(D) Three N and three O	(E)	Two N and three O	19991 2007 00 77632 58038
83.	Hard acids prefer to combin	ne wit	ĥ	
10000	(A) Soft bases	(B)	Soft acids	(C) Hard acids
	(D) Hard bases	(E)	Salts	89
84.	Among the following, which	th snee	ties represents a oseud	obalide?
0.0025	(A) CN	(B)	CaO	(C) I ₁
	(D) K ₂ Hgl ₄	(E)	BiOCI	1
85.	PCIs is stored in a well stor	pered	bottle since	
800	(A) It decomposes in the r	resen	ce of moisture	
	(B) It is decomposed by li	ght	25406457555966755	
	(C) It is highly volatile			
	(D) It reacts with air to for	m PO	Clu	
	(E) (A) and (C)			
86.	An orange solid (A) on he	ating	gives a green residue	(B), a colouriess cas (C)
0.reesth	and water vanours. The dr	v gas	(C) upon passing over	heated Mg gave a white
	solid (D) which upon sub-	sequer	t reaction with water	gave a gas (E) that gave
	dense white fumes with HC	I. Ide	ntify (D)	Serve a Servery and Barr
	(A) Fe(NH ₃)Cl ₂	(B)	CuN ₂	(C) Mg ₃ N ₂
	(D) NH ₄ Cl	(E)	FeCl ₂	were some some an
		Space	for rough work	
194	and the state of the state of the		2883	1210 227-011
Phy	-Cny-1-A1/2019		23	[P.T.O.

	mo	les of O2 is origin	ally present?	is a many mores	or of and	of teams when 22
	(A)	33.0	(B)	34.4	(C)	35.0
	(D)	31.8	(E)	31.0		
88.	Car	nallite is a miner	al containing	0		
	(A)	K	(B)	Na	(C)	Mg
	(D)	Fe	(E)	(A) and (C)		
89.	Max	ximum number	of photons	emitted by a	bulb capa	ble of producing
	mon	nochromatic ligh	t of waveler	igth 550 nm is	, if	00 V and I A is
	sup	plied for one hou	r.	94		RANN MURES CORPORE
	(A)	1×10^{24}	(B)	5×10^{24}	(C)	1×10^{23}
	(D)	5×10^{23}	(E)	5×10^{22}		THE COLORA
90.	Whi	ich of the followi	ng is the con	rect unit of angul	ur momentu	n of an electron in
	an d	rbital of an atom	2	1.0	12-11/0/2012/01/07	in the une second of the
	(A)	Js	(B)	J/s	(C)	W/s^2
	(D)	Ws	(E)	J s ²	1.6-1	
11.	Con	sider a fee lattic	e made of a	metal cation (M	⁶⁺) and three	oxide anions per
	unit	cell. The resulta	nt structure v	vould have	13 5117 6117 27	Salling and Peri
	(A)	3D network of e	dge shared o	ctahedra		
	(B)	3D network of c	orner shared	octahedra		
	(C)	2D network of e	dge shared o	ctahedra		
	(D)	2D network of c	orner shared	octahedra		
	(E)	3D network of f	ace shared oc	tahedra		
			100 and 10	Procession and the		

Phy-Chy-I-A1/2019

 \sim

92. The edge length of a solid possessing cubic unit cell is $2\sqrt{2}r$ (structure I), based on hard sphere model, which upon subjecting to a phase transition, a new cubic structure (structure II) having an edge length of $\frac{4r}{\sqrt{3}}$ is obtained, where r is the

radius of the hard sphere. Which of the following statements is true?

- (A) Density of the structure II is lower than structure I
- (B) Density of structure II is higher than structure I
- (C) The pore volume in structure I is 1.2 times higher than that of structure II
- (D) The pore volume of both the structures are equal
- (E) The octahedral voids in structure 1 is transformed into tetrahedral voids in structure 11
- 93. An ideal gas "A" having volume of 1 L at 27 °C is kept in a container having movable piston and adiabatic walls in ambient condition. If 1.33 L atm of energy is supplied inside the system, find out the final temperature of the system?

(A)	399 K	(B) 499 K	(C) 599 K
(D)	299 K	(E) 450 K	

94. A 5.2 L closed container contains some water and N₂(g) at 29 °C. The total pressure of the system and water tension are 1 atm and 0.04 atm, respectively. Upon electrolysing the liquid water inside completely, the final pressure of system was at 2 atm. What is number of moles of water that was present inside the container?

		P	for an and the second			
(D)	0.208 RT	(E)	8.0 RT			
(A)	3.46 RT	(B)	5.2 RT	(C)	10.4 RT	

Space for rough work

Phy-Chy-I-A1/2019

P.T.O.

95. A solution of methanol in water is 20 % by volume. If the solution and pure methanol have densities of 0.964 kg L⁻¹ and 0.793 kg L⁻¹, respectively, find the per cent of methanol by weight?

(A)	15.8	(B) 16.45	(C) 20
(D)	14.8	(E) 17.6	

96. The Henry's law constant for O₂ dissolved in water is 4.34×10⁴ atm at certain temperature. If the partial pressure of O₂ in a gas mixture that is in equilibrium with water is 0.434 atm, what is the mole fraction of O₂ in the solution?

- (A) 1×10^{-5}
- (B) 1×10^{-4}
- (C) 2×10⁻⁵
- (D) 1×10^{-6}
- (E) 2×10⁻⁶

97. The standard heat of formation of CH₄, CO₂ and H₂O (I) are -76.2, -394.8 and -285.82 kJ mol⁻¹, respectively. Heat of vaporization of water is 44 kJ mol⁻¹. Calculate the amount of heat evolved when 22.4 L of CH₄, kept under normal conditions, is oxidized into its gaseous products

(A) 802 kJ	(B) 878.4 kJ	(C) 702 kJ
(D) 788.4 kJ	(E) 500 kJ	

98. Acetic acid dimerizes when dissolved in benzene. As a result boiling point of the solution rises by 0.36°C, when 100 g of benzene is mixed with "X" g of acetic acid. In this solution, if experimentally measured molecular weight of acetic acid is 117.8 and molar elevation constant of benzene is 2.57 K kg mol⁻¹, what is the weight % and degree of dissociation (in %) of acetic acid in benzene?

(A)	1.62 and 98.3	(B) 0.81 and 98.3	(C) 0.5 and 86
(D)	1 and 98.3	(E) 1.4 and 99	

99. At a certain temperature, 2 moles of CO and 4 moles of Cl₂ gases were reacted to form COCl₂ in a 10 L vessel. At equilibrium if one mole of CO is present then equilibrium constant for the reaction is

(A) 4	(B) 3.3	(C) 1
(D) 2.5	(E) 4.5	

Space for rough work

100. The equilibrium constant for the reaction, $N_2(g) + 3H_2 \rightleftharpoons 2NH_3(g)$ and $2N_2(g) + 6H_2 \rightleftharpoons 4NH_3(g)$ are K₁ and K₂, respectively. The relationship between K₁ and K₂ is (A) $K = K^2$

(A) $K_2 = K_1^2$ (B) $K_2 = K_1^{-2}$ (C) $K_1 = K_2^2$ (D) $K_2 = \sqrt{K_1}$ (E) $K_1 = \sqrt{K_2}$

101. For a first order reaction, A(g) → B(g) at 35 °C, the volume of "A" left in the reaction vessel at various times are given below. [Given data: log(5/4) = 0.0969]

1/ minutes	0	10	20	30	40	
V/mL	25	20	15.7	12.5	9.6	

What is the value of rate constant?

A)	0.02231 min ⁻¹	(B)	0.04231 min ⁻¹	(C)	0.06231 min ⁻¹
D)	0.08231 min ⁻¹	(E)	0.1231 min ⁻¹		

102. Ecelt of the following cell is

Pt(s) | H₂(g), 1 bar | H⁺(1 M) || H⁺(0.1 M) | H₂(g), 1 bar | Pt(s)

143	-2.303RT	(D)	2.303RT	(0)	-2.303RT
(40)	F	(D)	F	(6)	2F
(D)	2.303RT	(E)	RT		
(1))	2F	(15)	2F		

103. In a lead-acid battery, if 1 A current is passed to charge the battery for 1 h, what is the amount of PbSO₄ converted to PbO₂? (Given data: 1 F = 96500 C mol⁻¹)

		Carriera	East susceeds weekb	
(D) 0.0268	moles	(E)	0.0400 moles	
(A) 0.0373	moles	(B)	0.0186 moles	(C) 0.0093 moles

Phy-Chy-I-A1/2019

[P.T.O,

- 104. A fuel cell operates at constant current, with H₂ fuel (1 bar) and O₂ oxidant (1 bar). The electrolyte used is 0.001 M HCl and the product(s) of the reaction are confined inside the fuel cell. Which of the following is true about the electrolyte?
 - (A) Boiling point of the electrolyte decreases with increase in the duration of fuel cell operation
 - (B) Boiling point of the electrolyte increases with increase in the duration of fuel cell operation
 - (C) Open circuit voltage of the fuel cell remains constant with increase in duration of operation
 - (D) Open circuit voltage of the fuel cell increases with increase in duration of operation
 - (E) Both (A) and (C)

105. The correct IUPAC name for methylisopropylacetylene is

- (A) 2-methyl-4-pentyne
- (B) 4-methyl-2-pentyne
- (C) isopropylmethylacetylene
- (D) 3-methyl-4-pentyne
- (E) 2-methyl-3-pentyne

(D) Beilstein's test

106. Cyclohexylamine and aniline can be distinguished by

(A) Hinsberg's test (B) Carbylamine test

(C) Bromine test

107. The compounds pyridine and planar cyclooctatetraene are

respectively

- (A) aromatic and non-aromatic
- (B) aromatic and anti-aromatic
- (C) aromatic and aromatic
- (D) anti-aromatic and non-aromatic
- (E) anti-aromatic and anti-aromatic

Space for rough work

(E) Lassaigne's test

(A)	1-bromopropane	(B)	2-bromopropane	(C) 1.2-dibromonropan
(D)	1-bromopropan-2-ol	(E)	2-bromopropan-1-ol	V=1 - 1
109	is a poter	t vaco	dilator	
(4)	Histomine	(B)	Serotonin	(C) Codeine
(D)	Cimetidine	(E)	Aspirin	(C) Coucine
370		Neg)	(salut iii	
110. An it	nvert sugar is			1020020
(A)	Isorotatory	(B)	Levorotatory	(C) Dextrorotatory
(D)	Optically inactive	(E)	Mutarotatory	- d
111. The	strongest base among t	he foll	lowing is	57
(A)	NH ₂	(B)	OH-	(C) CH=C
(D)	CH3CH2	(E)	OEt	
112. The	neopentyl halide in eth	anol v	ields alkenes by F1 a	achanism due to
(A)	low concentration of s	olvent	iends inkenies by Dr ii	containistii due to
(B)	absence of base			
(C)	it is a primary halide			
(D)	steric factor which pre	vents	F2 mechanism	
(E)	solvation effect			
113 4m	hromides are not good	candir	latar for	
(4)	Wurtz-Fittig reaction	canan	littes (0)	
(B)	Fittie reaction			
(C)	Friedel-Crafts reaction			
(D)	Grignard reaction			
(E)	Gabriel-phthalimide sy	vnthes	is	
114 5016	mation of bangana with		e culture e tit and i	
(A)	hanzanesulfonio acid	I CAUCS	ss summe acto provid	63
(B)	n-benzanadiculfonia a	a.d		
(C)	o-benzenedisulfonic at	and .		
(D)	at-benzenedisulfonie a	and		
(F)	decomposition of hara	iona		
164	decemposition of denz	Casaa	fee and the second	
		space	tor rough work	

115. The following reaction is named as

119. Benzonitrile can be prepared from benzaldehyde on treatment with

- (A) NH₂
- (B) NH₃ followed by hydrogenation with Ni
- (C) NH₂OH
- (D) NH2OH followed by dehydration with acetic anhydride
- (E) Hydrogen cyanide

120. The product formed in the below reaction is

BLANK PAGE

Phy-Chy-I-A1/2019

SEA

		91	В
		92	A
		93	A
		94	A
		95	В
		96	Α
		97	A
		- 98	A
		99	В
		001	Δ
		101	A
		102	A
73	C	103	В
74	B	104	Λ
75	A	105	В
76	Ð	106	C
77	С	[!] 107	В
78	В	108	Δ
. 79	A	109	Α
80	D	110	B
81	А	111	D
82	В	112	υ
83	D	. 113	Ε
84	Λ	114	D
85	А	115	Ç
86	D	116	В
87	B	117	D
88	E_	118	В
	Λ	119	D
90	Δ	1 120	В

61	A	91	В
62	<u> </u> <u>B</u>	92	C
63	<u></u>	93	B
64	E	94	Λ
65	E	95	A
66	B	96	<u> </u>
67	Ē	97	D
68	jВ,	98	D
69	A	- 99	ι E
70		100	T D
7]		101	C
72		102	[!] B
7.3	1 В	103	D
74	E	104	B
75	A j	105	Ď
76	A	106	B
77	в	107	C
78	Λ	108	B
79	Α	109	A
80	A	110	D
81	В	111	—с ¬
82	A	162	_в_
83	A	113	A
84	A	 4	_ת
85	B	115	A
86	Α	116	в
87	A	117	D
88		118	Λ
89	B	119	A
90	<u> </u>	120	D

61	L_C	jC 91 l	
62	В	92	D
63	A	93	С
64	Ċ	94	B
65	D	95	D
66	C	96	В
67	В	97	D
68	В	98	В
69	В	- 99	с [—]
70	С	100	В
71	D	101	A
72	В	102	D
73	В	103	C
_74	A	104	В
75	A	105	Α
76	A	106	D
77	В	107	_ A
78	A	108	в
79	Α	109	_D
80	<u>A</u>	110	Δ.
81	В	111	Λ
82	A	112	D
83	В	113	В
84	C .	114 j	E
85	В	115	A
86	Α.	116	A
87	A	117	B
88	В	118	Δ
. 89	υ	119	Λ
90	D.	120 _	Δ

	61	_ В	91	<u></u> B
	62	Λ	92	A
	63	Ľ	93	D
	64	C	94	A
	65	ן מ ו	95	в
	66	ם [96	Ď
	67	C [97	Λ
	68	В	98	Λ
	69	D	99	D
	70	B	100	В
	71	E	101	Ē
	72	D	102	A
	73	A	103	A
	74	Λ	104	В
	75	В	105	Δ
	76	D	106	Δ
	77	D	107	Λ
	78	E	108	В
	79	D	109	A
	80	C '	110	A
	81	B .	111	A
	82	D	112	В
	83	Bi	113	Α
	84	D	114	Α
	85	B	115	A
•	86	C '	:16	В
	87	в	117	A
	88	A	118	В
	89	D	119	С
	90	C	120	В
			()	ļ.

73.	Which one of the follo	wing will have the largest nu	mber of atoms?			
	(A) Ig Au(s)	(B) 1g Na(s)	(C) 1g Li(s)			
	(D) 1g of Cl ₂ (g)	(E) Ig of O ₂ (g)				
74.	An organic compound empirical formula is	An organic compound contains 24% carbon, 4% hydrogen and remaining chlorine. Its empirical formula is				
	(A) CHCI	(B) CH ₂ Cl	(C) CHCl ₂			
	(D) CH ₃ Cl	(E) CH ₂ Cl ₂	and the second se			
75.	The IUPAC name of an	element is Unbinilium. Its a	tomic number is			
	THE STATISTICS.	August Alight				

(A) 102 (B) 110 (C) 120 (D) 106 (E) 100

76. The number of electrons, protons and neutrons in a species are equal to 10, 11 and 12 respectively. The proper symbol of the species is

(A) 12 Na ⁺	(B) ²³ ₁₁ Na	(C) ²³ ₁₀ Ne	(D) $\frac{28}{11}$ Na ⁺	(E) $\frac{23}{11}$ Na ²⁺
	Spa	ce for rough work		

Phy-Chy-I-A1/2020

21

[P.T.O.

77,	Which one of periodic table	f the followi	ing element is	represent	ted as Eka-Silic	on in Mendeleev	
	(A) Gallium		(B) German	ium	(C) Ah	uninium	
	(D) Tin		(E) Arsenic		1125-0433	1000000000000	
78.	The correct n	atch among	the following i	5			
	(a) Lithium, S	odium, Potas	sium	(i) Alka	line earth metal	5	
	(b) Beryllium,	Magnesium	, Calcium	(ii) Sen	ni-metals		
	(c) Oxygen, S	ulphur, Selen	ium	(iii) Alk	ali metals		
	(d) Silicon, Ge	ermanium, A	rsenic	(iv) Cha	leogens		
	(A)(a)-(ii), (b)	-(i), (c)-(iv),	(d)-(iii)				
	(B) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)						
	(C) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)						
	(D)(a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)						
	(E) (a)-(ii), (b)	-(i), (c)-(iii),	(d)-(iv)				
79.	Which one of	the following	molecules is f	ormed by	sp ³ d hybridisati	ion?	
	(A) BrF ₅	(B) PF3	(C) SF ₆	(D)	[Co(NH ₃) ₆] ³⁺	$(E)\left[\mathrm{Pt}(\mathrm{Cl})_{4}\right] ^{2-}$	
80,	The correct or	ler of bond e	nergy (in kJ/m	ol) of the	following molec	rules is	
	(A) O ₂ <b<sub>2<c<sub>2</c<sub></b<sub>	$\leq N_2$	(B) B2 <c2<< td=""><td>02<n2< td=""><td>(C) C2<(</td><td>02<b2<n2< td=""></b2<n2<></td></n2<></td></c2<<>	02 <n2< td=""><td>(C) C2<(</td><td>02<b2<n2< td=""></b2<n2<></td></n2<>	(C) C2<(02 <b2<n2< td=""></b2<n2<>	
	(D) B2 <o2<c2< td=""><td><n2< td=""><td>(E) B2<o2<< td=""><td>N2<c2< td=""><td></td><td></td></c2<></td></o2<<></td></n2<></td></o2<c2<>	<n2< td=""><td>(E) B2<o2<< td=""><td>N2<c2< td=""><td></td><td></td></c2<></td></o2<<></td></n2<>	(E) B2 <o2<< td=""><td>N2<c2< td=""><td></td><td></td></c2<></td></o2<<>	N2 <c2< td=""><td></td><td></td></c2<>			
81.	The type of att	nactive force	s that operate b	etween ga	ascous HCl mole	ecules is	
	(A) dipole-dipo	ole forces	(B) dispersio	on forces			
	(C) ion-dipole	forces	(D) dipole-in	sduced dij	pole forces		
	(E) electrostati	c forces					

1

12

Phy-Chy-I-A1/2020

82. Schottky defect is shown by

(A) ionic substances in which the size of the cation is smaller than that of the anion

(B) ionic substances in which the cation and anion are of almost similar sizes

(C) ionic substances in which the size of the cation is larger than that of the anion

(D) non-stoichiometric inorganic solids

(E) non-ionic substances

In which one of the following reactions, entropy decreases? 83.

(A) Sodium chloride is dissolved in water

(B) Water is heated from 303K to 353K

(C) Sodium bicarbonate is decomposed to Na2CO3(s), CO2(g) and H2O(g)

(D) Water crystallizes into ice

(E) Dihydrogen molecule is decomposed into hydrogen atoms

The standard enthalpies of formation of H2O(I) and CO2(g) are respectively 84. -286 kJ mol⁻¹ and -394 kJ mol⁻¹. If the standard heat of combustion of CH4(g) is -891 kJ mol⁻¹, then the standard enthalpy of formation of CH₄(g) is

(A) -75 kJ mol⁻¹ (B) +75 kJ mol-1 (C) -211 kJ mol⁻⁴ (D) +211 kJ mol⁻¹ (E) -1571 kJ mol-1

Space for rough work

Phy-Chy-I-A1/2020

23

P.T.O.

85.	The equilibri particular tem taken in a one of chlorine at	um constant perature is 2 > -litre flask at t equilibrium is	for the equilibrium I 10 ⁻² mol dm ⁻³ . The nur he same temperature to	PCl ₃ (g)	t) + Cl₂(g) at a PCl₅ that must be ration of 0.20 mol
	(A) 2.0	(B) 2.2	(C) 1.8	(D) 0.2	(E) 0.1
86.	The pH of the of 0.005M Ca	: resultant sol (OH) ₂ is	ution obtained by mixir	ig 20mL of 0.01	M HCl and 20mL
	(A) 2	(B) 0	(C) 1	(D) 7	(E) 5
87.	$CH_4(g) + 4Cl_2$	$(g) \rightarrow CCL(1)$	+ 4HCl(g)		
	In the above re	eaction, the cl	ange of oxidation state	of carbon is	
	(A) from +4 to	-4	(B) from +1 to +4	(C) from	-4 to +4
	(D) from -1 to	o +1	(E) from -4 to -1		
88.	How many n electricity is p	toles of plati assed through	num will be deposited a 1.0 M solution of Pt ⁴	on the cathode	when 0.40 F of
	(A) 0.60 mol		(B) 1.0 mol	(C) 0.40	mol
	(D) 0.45 mol		(E) 0.10 mol		

Phy-Chy-1-A1/2020

.

89.	When the same as water, the ΔT_f values	mount of the ties are 0.15K a	solute 'P' and 'Q' nd 0.30K respectiv	are separately dis rely. If the molecul	solved in 500g ar weight of 'P'
	is so g mor , then	(R)	60 a mot	(C) 40 g mo	1.11
	(A) 30 g mol (D) 45 g mol ⁻¹	(E)	160 g mol ⁻¹	(c) to g in	
90.	A solution is prep	ared by dissol	ving 20g NaOH in	1250 mL of a sol	vent of density
	0.8 g/mL. Then the	e molality of th	e solution is		10
	(A) 0.2 mol kg ⁻¹	(B	0.08 mol kg ⁻¹	(C) 0.25 m	ol kg
	(D) 0.0064 mol k	g ⁻³ (E)	0.5 mol kg ⁻¹		
91.	The rate constant reactant reduce to	of a first order 2 g?	reaction is 231 ×	10 ⁻⁵ s ⁻¹ . How long	will 4 g of this
	(A) 310 s	(B) 300 s	(C) 210 s	(D) 30.1 s	(E) 230.3 s
92.	An endothermic t enthalpy change t B→ A is	reaction $A \rightarrow$ for the reaction	B has an activation is 2 kJ mol ⁻¹ . Th	on energy of 13 k e activation energy	J mol ⁻¹ and the of the reaction
	(A) 15 kJ mol	(B) 11 kJ mol ⁻¹	(C) 2 kJ m	$10\Gamma^1$
	(D) -15 kJ mol-1	(E) 26 kJ mol ⁻¹		

Phy-Chy-I-A1/2020

25

[P,T,O.

93. Adsorption is accompanied by

(A) decrease in enthalpy and decrease in entropy

(B) increase in enthalpy and decrease in entropy

(C) decrease in enthalpy and increase in entropy

(D) increase in enthalpy and increase in entropy

(E) no change in enthalpy and entropy

94. In the coagulation of a positive sol, the flocculating power of the ions PO₄³⁺, SO₄²⁺ and Cl⁻ decreases in the order

 (A) $PO_4^{3-} > C\Gamma > SO_4^{2-}$ (B) $PO_4^{3-} > SO_4^{2-} > CT$

 (C) $CI > SO_4^{2-} > PO_4^{3-}$ (D) $CI > PO_4^{3-} > SO_4^{3-}$

 (E) $SO_4^{2-} > PO_4^{3-} > CT$

95. Which one of the following nitrates does not give the corresponding metallic oxide, nitrogen dioxide and oxygen on heating?

(A) Lithium nitrate	(B) Beryllium nitrate	(C) Magnesium nitrate
(D) Calcium nitrate	(E) Potassium nitrate	

Space for rough work

Phy-Chy-I-A1/2020

96. Which of the following statement is incorrect about beryllium?

- (A)Beryllium hydroxide is amphoteric.
- (B) Beryllium compounds are largely covalent.
- (C) Beryllium is not easily attacked by acids.
- (D) Beryllium exhibit coordination number of six.
- (E) Beryllium hydroxide dissolves in excess of alkali to give a beryllate ion.

97. The oxyacid of phosphorus that contains one P-OH, two P-H and one P=O bonds is

- (A) Phosphinic acid (B) Phosphoric acid
- (C) Pyrophosphoric acid (D) Hypophosphoric acid
- (E) Pyrophosphorous acid

98. Choose the correct statements about diborane

- 1. It is prepared by the oxidation of sodium borohydride with iodine.
- II. It undergoes cleavage reactions with Lewis bases to give borane adducts.
- III. It is produced on an industrial scale by the reaction of BFx with LiAlH4.
- IV. It is readily hydrolysed by water to give borazine.
- V. It burns in oxygen and gives boron trioxide.
- (A) L II, III (B) I, II, V (C) L II, IV (D) II, III, IV (E) L III, V

99. Which one of the following actinoid has no electron in 6d orbital?

(A) Pa	(B) Np	(C) Lr	(D) Cm	(E) Pu
		THE ALL COMPANY OF THE REAL		

Space for rough work

Phy-Chy-I-A1/2020

[P.T.O.

100.	The catalyst use	d in th	e Wacker process of oxidat	ion of ethyne to ethanal is
	(A) Silver		(B) Nickel	(C) PdCl ₂
	$(D) \ V_2 O_3$		(E) Ziegler catalyst	β.
101.	The correct form	nula of	dichlorobis (triphenylphos	sphine) nickel(II) is
	(A) [NiCl2(PPh))2]Cl	(B) [NiCl ₂ (PPh ₃)]	(C) [NiCl ₂ (PPh ₂) ₃]
	(D) [NiCl(PPh3)	2]CI	(E) [NiCl ₂ (PPh ₃) ₂]	-
102.	Which one of th	e follo	wing is an ambidentate liga	ind?
	(A) CI ⁻		(B) H ₂ O	(C) H ₂ NCH ₂ CH ₂ NH
	(D) SCN		(E) C ₂ O ₄ ²⁻	
103.	Which one is no	t corre	ctly matched?	
	Ore		Composition	
	(A) Siderite	*	FeCO ₃	
	(B) Calamine	8	ZnCO ₃	
	(C) Sphalerite	*	ZnS	
	(D) Kaolinite	<u> (</u>	[Al ₂ (OH) ₄ Si ₂ O ₅]	
	(E) Cuprite	8	CuCO ₃ .Cu(OH) ₂	
104.	Which one of the	e follo	wing is a benzenoid aromat	ic compound?
	(A) Cyclooctatet	raene	(B) Hexyne	(C) Cyclohexane
	(D) Toluene		(E) Cyclopentadien	e i
105.	The products obt	tained	by the ozonolysis of 2-met	hylbut-1-ene are
	(A) propanone and ethanal		inal (B) propano	ne and methanal
	(C) butanone and	1 meth	anal (D) ethanal	and propanal
	(E) butanone and	i metha	anol	17° B

27

Phy-Chy-I-A1/2020

106. Which one of the following is not an isomer of 3-methylbut-1-yne?

(A) 2,3-Dimethylbuta-1,3-diene
 (B) Pent-1-yne
 (C) Pent-2-yne
 (D) Penta-1,3-diene
 (E) 2-Methylbuta-1,3-diene

107. The compound that does not undergo hydrolysis by S_N1 mechanism is

(A) C ₂ H ₂ CH ₂ Cl	(B) C _b H ₃ CH(CH ₃)Cl	$(C) C_6H_5CI$
(D) CH ₂ CH ₂ Cl	(E) C ₆ H ₅ CH(C ₆ H ₅)Cl	

108. Which one of the following is a secondary alcohol?

(A) 2-methylbutan-2-ol(B) 3-methylbutan-1-ol(C) 2-methylbutan-1-ol(D) 3-methylbutan-2-ol(E) 2,2-dimethylbutan-1-ol

109. An organic compound 'A' with molecular formula C₂H₆O forms 2,4-DNP derivative and reduces Tollens' reagent. When 'A' is heated with conc. KOH, it gives sodium benzoate and compound 'B'. The compound 'B' is

(A) Benzene	(B) Toluene	(C) Acetophenone
(D) Benzaldehyde	(E) Benzyl alcohol	

Space for rough work

Phy-Chy-I-A1/2020

29

[P.T.O.

110. Which one of the following compounds would undergo Cannizaro reaction?

(B) Cyclohexanone (C) 2,2-Dimethylbutanal

(D) I-Phenylpropanone (E) Phenylacetaldehyde

(A) 2-Methylpentanal

 111. Which one of the following can be prepared by Gabriel phthalimide synthesis?

 (A) 2-Aminotoluene
 (B) Aniline

 (D) Allylamine
 (E) N-Methylethanamine

112. The reagent that is used to distinguish between a secondary amine and a tertiary amine is

(A) p-toluenesulphonyl chloride (B) dil, HCl (C) dil, NaOH (D) CHCl₃ and alc, KOH (E) bromine water

113. Choose the correct statement of the following

(A)Cellulose is also known as animal starch.

(B) A linkage between two monosaccharide units through oxygen atom is called oxide linkage.

(C) Glucose on oxidation with bromine water gives n-hexane.

(D) Carbohydrates are used as storage molecules as starch in animals.

(E) Water insoluble component of starch is anylopectin.

114. Among the following which one is a non-reducing sugar?

(A) Lactose	(B) Glucose	(C) Sucrose	(D) Maltose	(E) Fructose
 	Spac	e fot rough work		

Phy-Chy-I-A1/2020

	(D) Acetylene	(E) Ethylene	
	(A) Methane	(B) Ethane	(C) Hydrogen sulphide
20.	Which one of the folle	owing is a greenhouse gas?	
	(D) Aspartame	(E) Terpineol	
	(A) Bithionol	(B) Ofloxacin	(C) Norethindrone
9.	Which one of the follo	owing is an antifertility drug?	V327-2010-4114474==
	(a) chacker of oxidat	ion whit oronnine water, gives	saccinding deid.
	(E) Glucose on avide	give 2,4* DNP (CS).	saccharic anid
	(C) Glucose pentaacel	and does not react with hydros	cytamine.
	(C) Character and the commo	my known as milk sugar.	ev (Valandar in:
	(A) All monosaccharl	ales are reducing sugars.	
8.	Which one of the follo	owing statements is not correct	rt?
		(a) subminime	
	(D) Offexacin	(E) Sulnhanilamide	fex mathing training
	(A) Prontosil	(B) Salvarsan	(C) Sulphapyridine
7.	The antimicrobial dru	e that contains arsenic is	
	(E) Adipic acid and h	examethylene diamine.	
	(D) Ethylene glycol a	nd terephthalic acid.	
	(C) Urea and formald	ehyde.	
	(B) Acrylonitrile and	1,3-butadiene.	
	(A) 3-Hydroxybutano	ic acid and 3-hydroxypentano	ic acid.
6.	Which one of the follo	owing sets forms the biodegra	dable polymer?
	(D) Melamine-formal	dehyde (E) Buna-N	
	(A) Buna-S	(B) Neoprene	(C) Polythene
	polymerisation?		

BLANK PAGE

32

Phy-Chy-I-A1/2020

		81	Α	101	Ε
		82	В	102	D
		83	D	103	Е
		84	Α	104	D
		85	В	105	С
		86	D	106	А
		87	С	107	С
		88	Е	108	D
		89	С	109	Е
		90	Е	110	С
		91	В	111	D
		92	В	112	Α
73	C	93	Α	113	E
74	В	94	В	114	С
75	C	95	Ε	115	D
76	D	96	D	116	А
77	В	97	Α	117	В
78	С	98	В	118	Е
79	В	99	Е	119	С
80	D	100	С	120	Α

61	Е	81	В	101	D
62	С	82	В	102	А
63	В	83	Α	103	E
64	С	84	В	104	С
65	А	85	Ε	105	D
66	В	86	D	106	А
67	D	87	Α	107	В
68	В	88	В	108	Е
69	С	89	Е	109	С
70	С	90	С	110	А
71	С	91	Е	111	С
72	Е	92	D	112	В
73	D	93	Ε	113	С
74	А	94	D	114	D
75	В	95	С	115	В
76	D	96	А	116	С
77	С	97	С	117	В
78	Е	98	D	118	D
79	С	99	Е	119	Α
80	Е	100	С	120	В

& CHEMISTRYVersion-A3

61	Α	81	D	101	В
62	Α	82	E	102	С
63	E	83	D	103	D
64	Α	84	С	104	В
65	В	85	Α	105	С
66	D	86	С	106	В
67	E	87	D	107	D
68	D	88	Ε	108	А
69	С	89	С	109	В
70	E	90	D	110	D
71	D	91	Α	111	А
72	Α	92	Ε	112	В
73	В	93	С	113	D
74	E	94	D	114	С
75	D	95	Α	115	Е
76	Α	96	В	116	С
77	В	97	Е	117	Е
78	E	98	С	118	В
79	С	99	Α	119	В

61	Е	81	Ε	101	В
62	Α	82	С	102	D
63	D	83	D	103	С
64	D	84	Α	104	E
65	А	85	В	105	С
66	С	86	Е	106	Ε
67	В	87	С	107	В
68	А	88	Α	108	В
69	Е	89	С	109	А
70	Α	90	В	110	В
71	В	91	С	111	Ε
72	Α	92	D	112	D
73	С	93	В	113	Α
74	А	94	С	114	В
75	С	95	В	115	Ε
76	D	96	D	116	С
77	Е	97	Α	117	Ε
78	С	98	В	118	D
79	D	99	D	119	Ε
80	Α	100	Α	120	D